
Since the sound travels from the submarine to the object AND back, it actually travelled 3625x2=7250m.

Speed of sound: 1450m/s
Contour lines are lines that signifies the elevation on a mountain or hill
Answer:
may be upside down alphabet :"T"
Explanation:
Answer:
Electric field, E = 0.064 V/m
Explanation:
It is given that,
Resistivity of silver wire, 
Current density of the wire, 
We need to find the magnitude of the electric field inside the wire. The relationship between electric field and the current density is given by :


E = 0.0636 V/m
or
E = 0.064 V/m
So, the magnitude of electric field inside the wire is 0.064 V/m. Hence, this is the required solution.
Answer:
It will have aim at a point "below" the insect.
From the insect's point of view, the fish will appear to be shallower than it actually is because a ray of light from the insect to the fish will be bent "towards" the normal when the ray enters the water