CO2 is carbon dioxide which is most famous for being in gas form so i would figure if it was exposed to freezing temperatures it would turn into a liquid then maybe a solid<span />
Answer:
increased
Explanation:
Consuming a compound increases the concentration. When you increase the concentration, the rate constant for that reaction also increases.
Input the atomic masses of Mg and P to give 134.84g/mol
Explanation:
The molar mass of a substance (atom or molecule or compound) is the mass in grams of one mole of the substance:
When dealing with an element the molar mass is the relative atomic mass expressed as g/mol.
For compounds, you add the atomic masses of the component atoms and you sum up.
You simply input the atomic mass of 3 atoms of Mg and 2 atoms of P
Atomic mass of Mg = 24.3g/mol
P = 30.97g/mole
Molar mass of Mg₃P₂ = 3(24.3) + 2(30.97) = 134.84g/mol
learn more:
Molar mass brainly.com/question/2861244
#learnwithbrainly
Answer:
992.302 K
Explanation:
V(rms) = 750 m/s
V(rms) = √(3RT / M)
V = velocity of the gas
R = ideal gas constant = 8.314 J/mol.K
T = temperature of the gas
M = molar mass of the gas
Molar mass of CO₂ = [12 + (16*2)] = 12+32 = 44g/mol
Molar mass = 0.044kg/mol
From
½ M*V² = 3 / 2 RT
MV² = 3RT
K = constant
V² = 3RT / M
V = √(3RT / M)
So, from V = √(3RT / M)
V² = 3RT / M
V² * M = 3RT
T = (V² * M) / 3R
T = (750² * 0.044) / 3 * 8.314
T = 24750000 / 24.942
T = 992.302K
The temperature of the gas is 992.302K
Note : molar mass of the gas was converted from g/mol to kg/mol so the value can change depending on whichever one you use.