Answer:
Heating this gas to 55 °C will raise its volume to 6.87 liters.
Assumption: this gas is ideal.
Explanation:
By Charles's Law, under constant pressure the volume
of an ideal gas is proportional to its absolute temperature
(the one in degrees Kelvins.)
Alternatively, consider the ideal gas law:
.
is the number of moles of particles in this gas.
should be constant as long as the container does not leak.
is the ideal gas constant.
is the pressure on the gas. The question states that the pressure on this gas is constant.
Therefore the volume of the gas is proportional to its absolute temperature.
Either way,
.
.
For the gas in this question:
- Initial volume:
.
Convert the two temperatures to degrees Kelvins:
- Initial temperature:
. - Final temperature:
.
Apply Charles's Law:
.
Answer:Effect of Catalysts on the Activation Energy. Catalysts provide a new reaction pathway in which a lower Activation energy is offered. A catalyst increases the rate of a reaction by lowering the activation energy so that more reactant molecules collide with enough energy to surmount the smaller energy barrier.
Explanation:
Your answer is in this
I’m not sure what the 6 means, but for the first one, the process being shown is photosynthesis that occurs in a plant. The first two compounds are the reactants. The CO2 is carbon dioxide, and the H2O is water. When these two reactants are put together with some sunlight, they create the products. The C6H12O6 is glucose, and the O2 is oxygen.
Answer:
Ion-dipole forces
Explanation:
Na⁺ is a cation, that is, an ion with a positive charge.
NH₃ has polar covalent bonds (due to the difference in electronegativity between nitrogen and hydrogen). According to the VESPR theory, it has a trigonal pyramidal shape with a lone pair. As a consequence, it has a net dipole moment and the molecule is polar.
The intermolecular forces between Na⁺ (ion) and NH₃ (dipole) are ion-dipole forces.
Answer:
<em>Varying frequency</em> between both waves accounts for difference in speed.
Explanation:
The speed of a wave is dependent on four major factors:
- wavelength
- frequency
- medium, and
- temperature
Assuming equal temperature and medium of travel of these sound waves, and given that the wavelength (that is distance of travel) is equal, the only varying factor would be their frequency.
Wave speed is calculated by multiplying the wavelength times the frequency
⇒ Speed = λ * <em>f</em>