Answer: Would be D. Fe and S have an ionic bond, while S and O have covalent.
Hope that helps.
Answer:
a) [A⁻]/[HA] = 0.227
b) [A⁻]/[HA] = 0.991
c) [A⁻]/[HA] = 2.667
Explanation:
In the Henderson-Hasselbalch equation, HA stands from an acid an A⁻ stands from its conjugate base, as follows:
pH = pka + Log [A⁻]/[HA]
pH = 4.874 + Log[CH₃CH₂CO₂⁻]/[CH₃CH₂CO₂H]
4.23 = 4.874 + Log [A⁻]/[HA]
-0.644 = Log [A⁻]/[HA]
= [A⁻]/[HA]
0.227 = [A⁻]/[HA]
4.87 = 4.874 + Log [A⁻]/[HA]
-0.004 = Log [A⁻]/[HA]
= [A⁻]/[HA]
0.991 = [A⁻]/[HA]
5.30 = 4.874 + Log [A⁻]/[HA]
0.426 = Log [A⁻]/[HA]
= [A⁻]/[HA]
2.667 = [A⁻]/[HA]
If molecules are in a closed container then we expect the pressure to increase as the kinetic energy increases. This is because the atoms of an element collide with the walls of the container and increase the pressure.
If we use the formula
, where P is the pressure, V is the volume, n is the number of moles, R the ideal gas constant and T is the temperature. According to the formula, P is directly proportional to temperature. An increase in temperature leads to an increase in pressure.
Since we know that temperature is the average kinetic energy of molecules present. It means as we increase the temperature we increase the kinetic energy of the molecules which in turn leads to an increase in the pressure.
A student determines that 23.1 J of heat are required to raise the temperature of 6.67 g of an
The best and most correct answer among the choices provided by the question is the fourth choice "alcoholic fermentation"
Ethanol fermentation<span>, also called </span>alcoholic fermentation<span>, is a biological process which converts sugars such as glucose, fructose, and sucrose into cellular energy, producing </span>ethanol<span> and carbon dioxide as a side-effect.</span>
I hope my answer has come to your help. God bless and have a nice day ahead!