The average force on the squid during the ejection of 0.60 kg of water at a velocity of 15.0 m/s in 0.15 seconds is 60 N.
We can calculate the average force with the average acceleration as follows:
(1)
Where:
- m: is the mass of water = 0.60 kg
: is the average acceleration
The <em>average acceleration</em> is given by the change of velocity in an interval of time
(2)
Where:
: is the initial velocity = 0 (the squid is at rest)
: is the final velocity = 15.0 m/s
: is the initial time = 0
: is the final time = 0.15 s
Now we can find the <em>average force</em> after entering equation (2) into (1)
Therefore, the average force on the squid during the propulsion is 60 N.
Find more about average force here:
I hope it helps you!
Weight tending to shear the pin is
W = 24.0 N
The shear area of the pin is
A = (π/4)*(2.0 x 10⁻³ m)² = 3.1416 x 10⁻⁶ m².
The shear stress is
τ = (24.0 N)/(3.1416 x 10⁻⁶ m²)
= 7.64 x 10⁶ Pa
= 7.64 MPa
Answer: 7.64 Mpa
Explanation:
1 mega Hertz = 1000000 hertz