Answer:
Explanation:
It wouldn't work because the wind energy she would be collecting would actually come from the car engine.
The relative wind velocity observed from a moving vehicle is the sum of the actual wind velocity and the velovity of the vehicle.
u' = u + v
While running a car will generate a rather high wind velocity, and increase the power generated by a wind turbine, the turbine would only be able to convert part of the wind energy into electricity while adding a lot of drag. In the end, it would generate less energy that what the drag casuses the car to waste to move the turbine.
Regenerative braking uses an electric generator connected to the wheel axle to recover part of the kinetic energy eliminated when one brakes the vehicle. Normal brakes dissipate this energy as heat, a regenerative brake uses it to recharge a batttery. Note that is is a fraction of the energy that is recovered, not all of it.
A "regenerative accelerator" makes no sense. Braking is taking kinetic energy out of the vehicle, while accelerating is adding kinetic energy to it. Cars accelerate using the power from their engines.
Answer:
The flux (volume of water per unit time) through the hoop will also double.
Explanation:
The flux = volume of water per unit time = flow rate of water through the hoop.
The Flow rate of water through the hoop is proportional to the area of the hoop, and the velocity of the water through the hoop.
This means that
Flow rate = AV
where A is the area of the hoop
V is the velocity of the water through the hoop
This flow rate = volume of water per unit time = Δv/Δt =Q
From all the above statements, we can say
Q = AV
From the equation, if we double the area, and the velocity of the stream of water through the hoop does not change, then, the volume of water per unit time will also double or we can say increases by a factor of 2
They all share the way that they are fundamentally designed: if they are quite complex, they will share the same basic logic foundations, like the way that the programming languages work. They also all share the method of construction and common and fundamental electronic components, like resistors, capacitors and transistors. As we humans design them, they make logical sense to at least someone, and probably only discounting the internet, you can probably draw logic diagrams and whatever to represent how they work.
Because they are designed by Humans, in a way they all mimic how our brains and society work. Also, as yet there are no truly intelligent technological systems, and are only able to react to a situation how they have been programmed to do so.
Answer:
7.8 Mph
Explanation:
Rate of cycling = 1.1 rev/s
Rear wheel diameter = 26 inches
Diameter of sprocket on pedal = 6 inches
Diameter of sprocket on rear wheel = 4 inches
Circumference of rear wheel = \pi d=26\piπd=26π
Speed would be
\begin{gathered}\text{Rate of cycling}\times \frac{\text{Diameter of sprocket on pedal}}{\text{Diameter of sprocket on rear wheel}}\times{\text{Circumference of rear wheel}}\\ =1.1\times \frac{6}{4}\times 26\pi\\ =134.77432\ inches/s\end{gathered}Rate of cycling×Diameter of sprocket on rear wheelDiameter of sprocket on pedal×Circumference of rear wheel=1.1×46×26π=134.77432 inches/s
Converting to mph
1\ inch/s=\frac{1}{63360}\times 3600\ mph1 inch/s=633601×3600 mph
134.77432\ inches/s=134.77432\times \frac{1}{63360}\times 3600\ mph=7.65763\ mph134.77432 inches/s=134.77432×633601×3600 mph=7.65763 mph
The Speed of the bicycle is 7.8 mph