1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonja [21]
3 years ago
9

What gage pressure does a skin diver experience when they dive to 35 ft in the ocean with a water temperature of 55 °F? Report y

our answer in lbf/in^2.
Engineering
1 answer:
TEA [102]3 years ago
4 0

Answer:

p=15.097lbf/in^2

Explanation:

the manometric pressure is that in which the atmospheric pressure is not taken into account, so for this case only the pressure exerted by the water on the bus is calculated using the following equation.

P=ρgh

where

ρ=density of water at 55°F=999.4kg/m^3

g=9.81m/s^2

h=35ft=10.668m

Solving

P=(994.4)(9.81)(10.668)=104067.02Pa = 15.097lbf/in^2

the gage pressure does a skin diver experience when they dive to 35 ft is 15.097lbf/in^2

You might be interested in
Carbon resistors often come as a brown cylinder with colored bands. These colored bands can be read to determine the manufacture
alexandr1967 [171]

Answer:

a) 4.7 kΩ, +/- 5%

b) 2.0 MΩ, +/- 20%

Explanation:

a) If the resistor has the following combination of color bands:

1) Yellow = 1st digit = 4

2) Violet = 2nd digit = 7

3) Red = multiplier = 10e2

4) Gold = tolerance = +/- 5%

this means that the resistor has 4700 Ω (or 4.7 kΩ), with 5% tolerance.

b) Repeating the process for the following combination of color bands:

1)  Red = 1st digit = 2

2) Black = 2nd digit = 0

3) Green = multiplier = 10e5

4) Nothing = tolerance = +/- 20%

This combination represents to a resistor of 2*10⁶ Ω (or 2.0 MΩ), with +/- 20% tolerance.

7 0
3 years ago
An ideal reheat Rankine cycle with water as the working fluid operates the boiler at 15,000 kPa, the reheater at 2000 kPa, and t
solniwko [45]

Answer:

See the explanation below.

Explanation:

First find the enthalpies h₁, h₂, h₃, h₄, h₅, and h₆.

Find h₁:

Using Saturated Water Table and given pressure p₁ = 100 kPa

h₁ = 417.5 kJ/kg

Find h₂:

In order to find h₂, add the w_{p} to h₁, where  w_{p}  is the work done by pump and h₁ is the enthalpy computed above h₁ = 417.5 kJ/kg.

But first we need to compute  w_{p} To computer  

Pressures:

p₁ = 100 kPa

p₂ = 15,000 kPa

and

Using saturated water pressure table, the volume of water v_{f} = 1.0432

Dividing 1.0432/1000 gives us:

Volume of water = v₁ =  0.001043 m³/kg

Compute the value of h₂:

h₂ = h₁ + v₁ (p₂ - p₁)

    = 417.5 kJ/kg + 0.001043 m³/kg ( 15,000 kPa - 100 kPa)

    =  417.5 + 0.001043 (14900)

    = 417.5 + 15.5407

    = 433.04 kJ/kg

Find h₃  

Using steam table:

At pressure p₃ = 15000 kPa

and Temperature = T₃ = 450°C

Then h₃ = 3159 kJ/kg

The entropy s₃ = 6.14 kJ/ kg K

Find h₄

Since entropy s₃ is equal to s₄ So

s₄ = 6.14 kJ/kgK

To compute h₄

s₄ = s_{f} + x_{4} s_{fg}

x_{4} = s_{4} -s_{f} /s_{fg}

x_{4} = 6.14 -  2.45 / 3.89

x_{4}   = 0.9497

The enthalpy h₄:

h₄ = h_{f} +x_{4} h_{fg}

    = 908.4 + 0.9497(1889.8)

    =  908.4 + 1794.7430

    = 2703 kJ/kg

This can simply be computed using the software for steam tables online. Just use the entropy s₃ = 6.14 kJ/ kg K and pressure p₄ = 2000 kPa

Find h₅

Using steam table:

At pressure p₅ = 2000 kPa

and Temperature = T₅ = 450°C

Then h₅  = 3358 kJ/kg

Find h₆:

Since the entropy s₅ = 7.286 kJ/kgK is equal s₆ to  So

s₆ = 7.286 kJ/kgK = 7.29 kJ/kgK

To compute h₆

s₆ = s_{f} + x_{6} s_{fg}

x_{6} = s_{6} -s_{f} /s_{fg}

x_{6} = 7.29 - 1.3028 / 6.0562

x_{6}   = 0.988

The enthalpy h₆:

h₆ = h_{f} +x_{6} h_{fg}

    = 417.51 + 0.988 (2257.5)

    = 417.51 + 2230.41

  h₆ =  2648 kJ/kg

This can simply be computed using the software for steam tables online. Just use the entropy s₅ = 7.286 kJ/kgK and pressure p₅ = 2000 kPa

Compute power used by pump:

P_{p} is found by using:

mass flow rate = m =  1.74 kg/s

Volume of water = v₁ =  0.001043 m³/kg

p₁ = 100 kPa

p₂ = 15,000 kPa

P_{p}  = ( m ) ( v₁ ) ( p₂ - p₁ )

     = (1.74 kg/s) (0.001043 m³/kg) (15,000 kPa - 100 kPa)

     = (1.74 kg/s) (0.001043 m³/kg) (14900)

     = 27.04

P_{p} = 27 kW

Compute heat added q_{a} and heat rejected q_{r}  from boiler using computed enthalpies:

q_{a} = ( h₃ - h₂ ) + ( h₅ - h₄ )

      = ( 3159 kJ/kg - 433.04 kJ/kg ) + ( 3358 kJ/kg - 2703 kJ/kg )

      = 2726 + 655

      = 3381  kJ/kg

q_{r} =  h₆ - h₁

  = 2648 kJ/kg - 417.5 kJ/kg

  = 2232 kJ/kg

Compute net work

W_{net} = q_{a} - q_{r}

       = 3381  kJ/kg - 2232 kJ/kg

       = 1150 kJ/kg

Compute power produced by the cycle

mass flow rate = m =  1.74 kg/s

W_{net} = 1150 kJ/kg

P = m * W_{net}

  = 1.74 kg/s * 1150 kJ/kg

  = 2001 kW

Compute rate of heat transfer in the reheater

Q = m * ( h₅ - h₄ )

   =  1.74 kg/s * 655

   =  1140 kW

Compute Thermal efficiency of this system

μ_{t} = 1 - q_{r} /  q_{a}

   = 1 - 2232 kJ/kg / 3381  kJ/kg

   = 1 - 0.6601

   = 0.34

   = 34%

7 0
3 years ago
A square-thread power screw has a major diameter of 32 mm and a pitch of 4 mm with single threads, and it is used to raise a loa
Valentin [98]

Answer:

54mm.

Explanation:

So, we are given the following data or parameters or information that is going to assist in solving this type of question efficiently;

=> "A square-thread power screw has a major diameter of 32 mm"

=> "a pitch of 4 mm with single threads"

=> " and it is used to raise a load putting a force of 6.5 kN on the screw."

=> The coefficient of friction for both the collar and screw is .08."

=> "If the torque from the motored used to raise the load is limited to 26 N×M."

Step one: determine the lead angle. The lead angle can be calculated by using the formula below;

Lead angle = Tan^- (bg × T/ Jh × π ).

=> Jh = J - T/ 2. = 32 - 4/2. = 30mm.

Lead angle = Tan^- { 1 × 4/ π × 30} = 2.43°.

Step two: determine the Torque required to against thread friction.

Starting from; phi = tan^-1 ( 0.08) = 4.57°.

Torque required to against thread friction = W × Jh/2 × tan (lead angle + phi).

Torque required to against thread friction =( 6500 × 30/2) × tan ( 2.43° + 4.57°). = 11971.49Nmm.

Step three: determine the Torque required to against collar friction.

=> 2600 - 11971.49Nmm = 14028.51Nmm.

Step four = determine the mean collar friction.

Mean collar friction = 14028.51Nmm/0.08 × 6500 = 27mm

The mean collar diameter = 27 × 2 = 54mm.

5 0
3 years ago
Select the level of education that is best demonstrated in each example.
Nastasia [14]

Answer:

masters

associate

bachelors

Explanation:

8 0
3 years ago
Read 2 more answers
2. BCD uses 6 bits to represent a symbol. a) True b) False​
Goshia [24]

Answer:

true because BCD used 6 bits to represent a symbol .

Explanation:

mark me brainlist

4 0
2 years ago
Other questions:
  • Are engineers needed in today’s society ? Why or why not ? I need a short three paragraph essay !!! Please help me !!!
    13·1 answer
  • If you should lose your balance, you should grab onto the turning center to steady yourself.
    10·1 answer
  • Consider the freeway in Problem 1. At one point along this freeway there is a 4% upgrade with a directional hourly traffic volum
    15·2 answers
  • Ventajas motor avion
    5·1 answer
  • A bolt is tightened, subjecting its shank to a tensile stress of 80 kpsi and a torsional shear stress of 50 kpsi at a critical p
    7·1 answer
  • Simplify the following expressions, then implement them using digital logic gates. (a) f = A + AB + AC (b) f = AB + AC + BC (c)
    5·1 answer
  • Why is oil black and why does oil look black
    10·1 answer
  • Lance is the sitting judge in the local family court. What education might have been
    10·1 answer
  • What are some sources of resistance? (Check all
    5·1 answer
  • Write down about the water source selection criteria​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!