If dirt and grease were good conductors of electrical current, then we could make wire
out of dirt and grease instead of expensive copper. Sadly, they're not. So a coating of
dirt and grease on the wire can have a substantial impact on the connection, and can
even block the flow of current across the connection completely. Moreover, in the case
where the ends of the wires are to be soldered, solder does not adhere to dirty wire.
Average speed of the car is 11 m/s
Explanation:
- Speed is calculated by the rate of change of displacement.
- It is given by the formula, Speed = Distance/Time
- Here, distance = 2155 m and time = 195.9 s
Speed of the car = 2155/195.9 = 11 m/s
Answer: (a) The magnitude of its temperature change in degrees Celsius is .
(b) The magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is .
Explanation:
(a) Expression for change in temperature is as follows.
= 15.1 K
=
=
=
Therefore, the magnitude of its temperature change in degrees Celsius is .
(b) Change in temperature from Celsius to Fahrenheit is as follows.
F = 1.8C + 32
C =
Since, K = C + 273
or,
= 1.8 (15.1)
=
or, =
Thus, we can conclude that the magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is .
Answer:
False
Explanation:
When the location of the poles changes in the z-plane, the natural or resonant frequency (ω₀) changes which in turn changes the damped frequency (ωd) of the system.
As the poles of a 2nd-order discrete-time system moves away from the origin then natural frequency (ω₀) increases, which in turn increases damped oscillation frequency (ωd) of the system.
ωd = ω₀√(1 - ζ)
Where ζ is called damping ratio.
For small value of ζ
ωd ≈ ω₀
-- Momentum is (mass) x (speed).
Object B has 1.5 times as much momentum as Object A has.
-- Kinetic energy is (1/2) x (mass) x (speed) .
Object B has 1.5 times as much kinetic energy as Object A has.
-- If they would both stop long enough to get on the scale,
Object B would weigh 1.5 times as much as Object A does.