Answer: c. they will hit the ground at the same time
Explanation:
The volume of both objects is almost the same, so the force of friction will be the same in each one, so we can discard it.
Now, when yo drop an object, the acceleration of the object is always g = 9.8m/s^2 downwards, independent of the mass of the object.
So if you drop two objects with the same volume but different mass, because the acceleration is the same for both of them, they will hit the ground at the same time, this means that the density of the object has no impact in how much time the object needs to reach the floor.
So the correct option is c
Answer:
They are conductors/conductive. Materials that can transfer thermal energy well are conductive.
Explanation:
A chemist is likely to:
<span>1. analyze the ingredients in ice cream
</span><span>2. determine how to separate gasoline from other substances in petroleum</span>
According to Newton's Second Law of motion, the net force acting on the object is equal to its mass multiplied by its acceleration. In formula, it is written as
Net Force =mass * acceleration
Net force = 25 kg * 5m/s^2
Net force = 125 Newtons
Answer:
Earth attract the Moon with a force that is greater.
Explanation:
According to the law of gravitation, the gravitational force between two masses is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.
Mathematically, F1 = Gm1m2/r²... 1
Let m1 be the mass of the earth and m2 be that of the moon
If the Earth is much more massive than is the Moon, the new force of attraction between them will become;
F2= G(2m1)m2/r²
F2 = 2Gm1m2/r² ... (2)
Dividing eqn 1 by 2 we have;
F1/F2 = (Gm1m2/r²)÷(2Gm1m2/r²)
F1/F2 = Gm1m2/r²×r²/2Gm1m2
F1/F2 = 1/2
F2=2F1
This shows that that the earth will attract the moon by a force 2times the initial force of the masses(i.e a much greater force)