Answer:
(a) attached below
(b)

(c) 
(d)
Ω
(e)
and 
Explanation:
Given data:





(a) Draw the power triangle for each load and for the combined load.
°
°
≅ 

≅ 
The negative sign means that the load 2 is providing reactive power rather than consuming
Then the combined load will be


(b) Determine the power factor of the combined load and state whether lagging or leading.

or in the polar form
°

The relationship between Apparent power S and Current I is

Since there is conjugate of current I therefore, the angle will become negative and hence power factor will be lagging.
(c) Determine the magnitude of the line current from the source.
Current of the combined load can be found by


(d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity?Give your answer in Ω


Ω
(e) Compute the magnitude of the current in each capacitor and the line current from the source.
Current flowing in the capacitor is

Line current flowing from the source is

Answer:
112.5 watts
Explanation:
The output voltage (V) = 15 volts
The equivalent resistance for the speakers connected in parallel (
) is gotten by using the formula:

The current flowing through the amplifier (I) is:
I = V /
= 15 / 2 = 7.5 A
The audio power (P) when outputting this maximum voltage is given by:
P = V² /
= I²
. Therefore:
P = V² /
= 15² /
= 112.5 watts
Answer:
W= 8120 KJ
Explanation:
Given that
Process is isothermal ,it means that temperature of the gas will remain constant.
T₁=T₂ = 400 K
The change in the entropy given ΔS = 20.3 KJ/K
Lets take heat transfer is Q ,then entropy change can be written as

Now by putting the values

Q= 20.3 x 400 KJ
Q= 8120 KJ
The heat transfer ,Q= 8120 KJ
From first law of thermodynamics
Q = ΔU + W
ΔU =Change in the internal energy ,W=Work
Q=Heat transfer
For ideal gas ΔU = m Cv ΔT]
At constant temperature process ,ΔT= 0
That is why ΔU = 0
Q = ΔU + W
Q = 0+ W
Q=W= 8120 KJ
Work ,W= 8120 KJ