Answer:
the maximum length of the specimen before deformation is 0.4366 m
Explanation:
Given the data in the question;
Elastic modulus E = 124 GPa = 124 × 10⁹ Nm⁻²
cross-sectional diameter D = 4.2 mm = 4.2 × 10⁻³ m
tensile load F = 1810 N
maximum allowable elongation Δl = 0.46 mm = 0.46 × 10⁻³ m
Now to calculate the maximum length
for the deformation, we use the following relation;
= [ Δl × E × π × D² ] / 4F
so we substitute our values into the formula
= [ (0.46 × 10⁻³) × (124 × 10⁹) × π × (4.2 × 10⁻³)² ] / ( 4 × 1810 )
= 3161.025289 / 7240
= 0.4366 m
Therefore, the maximum length of the specimen before deformation is 0.4366 m
The displacement ∆S of the particle during the interval from t = 2sec to 4sec is; 210 sec
<h3>How to find the displacement?</h3>
We are given the velocity equation as;
s' = 40 - 3t²
Thus, the speed equation will be gotten by integration of the velocity equation to get;
s = ∫40 - 3t²
s = 40t - ¹/₂t³
Thus, the displacement between times of t = 2 sec and t = 4 sec is;
∆S = [40(4) - ¹/₂(4)³] - [40(2) - ¹/₂(2)³]
∆S = 210 m
Read more about Displacement at; brainly.com/question/4931057
#SPJ1
The answer is B . have a good day