None of the choices is an appropriate response.
There's no such thing as the temperature of a molecule. Temperature and
pressure are both outside-world manifestations of the energy the molecules
have. But on the molecular level, what it is is the kinetic energy with which
they're all scurrying around.
When the fuel/air mixture is compressed during the compression stroke,
the temperature is raised to the flash point of the mixture. The work done
during the compression pumps energy into the molecules, their kinetic
energy increases, and they begin scurrying around fast enough so that
when they collide, they're able to stick together, form a new molecule,
and release some of their kinetic energy in the form of heat.
I think it is False
hope this helps :3
Answer:
Far point of the eye is 22.24 m
Far point of the eye is 0.4 m
Explanation:

Object distance = u
Image distance = v
Lens equation

Far point

Far point of the eye is 22.24 m
Object distance = u = 0.25-0.02 = 0.23 m


Near point

Far point of the eye is 0.4 m
Electrons move in atomic orbitals (or subshells). there are four different orbital shapes (s p d f). in each shell, the s subshell is at a lower energy than the p. an orbital diagram is used to determine an atom's electron configurations
Answer:

Explanation:
<u>The total momentum of a system is defined by:</u>

Where,
is the total momentum or it could be expressed also as
.
and
represents the masses of the objects interacting in the system.
and
are the velocities of the objects of the system.
<em>Remember: </em><em>The momentum is a fundamental physical magnitude of vector type.</em>
We have:


We are going to take the east side as positive, and the west side as negative. Then the velocity of the car B, has to be <u>negative</u>. It goes in a different direction from car A.

Then the total momentum of the system is:
