When energy is needed in order for the reaction to happen, then that reaction is known as endotermic. When the reaction has as a result energy then it is exotermic. An example of an endotermic reaction would be photosynthesis, for an exotermic: combustion.

It represents
<h2>A) 1,000 grams</h2>
(1 kilogram = 1000 grams)

Answer: hello your question is poorly written below is the complete question
answer:
For N1 : sp³ orbital
For N2: p orbital
For N3 : p orbital
For N4 : sp² orbital
For N5 : sp² orbital
Explanation:
Determining the type of orbital in which the lone pair on each N atom will reside.
From the configuration attached below we can determine the type of orbital and they are ;
For N1 : sp³ orbital
For N2: p orbital
For N3 : p orbital
For N4 : sp² orbital
For N5 : sp² orbital
Answer:
The amount of energy liberated will be 49.38 J.
Explanation:
The amount of energy liberated (gibbs free energy) can be calculated using the following equation:
ΔG° = -nFε
n: amount of moles of electrons transfered
F: Faraday's constant
ε: cell potential
20.0 g of Zn is equal to 0.30 mol.
Two electrons are transfered during the reaction.
Therefore, n = 2x0.30 ∴ n = 0.60
ΔG° = - 0.60 x 96.485 x 0.853
ΔG° = 49.38 J
<span>2Li⁺(aq) + Zn⁰(s) → 2Li⁰(s) + Zn²⁺(aq)
</span>2Li⁺(aq) + 2e⁻ → 2Li⁰(s)
Zn⁰(s) → Zn²⁺(aq) +2e⁻
2 electrons are transferred from atom of Zn⁰ to 2 ions of Li⁺.