1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dybincka [34]
3 years ago
7

Water flows steadily through the pipe as shown below, such that the pressure at section (1) and at section (2) are 300 kPa and 1

00 kPa respectively. Determine the diameter of the pipe at section (2), D, if the velocity at section (1) is 20 m/sec and viscous effects are negligible.
Engineering
1 answer:
steposvetlana [31]3 years ago
3 0

Answer:

The velocity at section is approximately 42.2 m/s

Explanation:

For the water flowing through the pipe, we have;

The pressure at section (1), P₁ = 300 kPa

The pressure at section (2), P₂ = 100 kPa

The diameter at section (1), D₁ = 0.1 m

The height of section (1) above section (2), D₂ = 50 m

The velocity at section (1), v₁ = 20 m/s

Let 'v₂' represent the velocity at section (2)

According to Bernoulli's equation, we have;

z_1 + \dfrac{P_1}{\rho \cdot g} + \dfrac{v^2_1}{2 \cdot g} = z_2 + \dfrac{P_2}{\rho \cdot g} + \dfrac{v^2_2}{2 \cdot g}

Where;

ρ = The density of water = 997 kg/m³

g = The acceleration due to gravity = 9.8 m/s²

z₁ = 50 m

z₂ = The reference = 0 m

By plugging in the values, we have;

50 \, m + \dfrac{300 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{(20 \, m/s)^2}{2 \times 9.8 \, m/s^2} = \dfrac{100 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}50 m + 30.704358 m + 20.4081633 m = 10.234786 m + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

50 m + 30.704358 m + 20.4081633 m - 10.234786 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

90.8777353 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

v₂² = 2 × 9.8 m/s² × 90.8777353 m

v₂² = 1,781.20361 m²/s²

v₂ = √(1,781.20361 m²/s²) ≈ 42.204308 m/s

The velocity at section (2), v₂ ≈ 42.2 m/s

You might be interested in
Explain race condition..<br><br>don't spam..​
nalin [4]

There are lot of factors that influences race. The explanation of the term is given below.

<h3>What is the race condition?</h3>

A race condition is known to be a type of situation that one finds to be unattractive or undesirable.

This type of condition often takes when a tool, device or system tries every possible way to carry out two or more work at the same time, but due to the the nature of the tool, device or system, the work have to be done in a sequential manner or the right steps so that there will be no error.

A common and well known example of a race condition is the light switch.

Learn more about race condition from

brainly.com/question/13445523

6 0
2 years ago
Read 2 more answers
A pressure gage connected to a tank reads 50 psi at a location where the barometric reading is 29.1 inches Hg. Determine the abs
Effectus [21]

Answer:

Absolute pressure , P(abs)= 433.31 KPa

Explanation:

Given that

Gauge pressure P(gauge)=  50 psi

We know that barometer reads atmospheric pressure

Atmospheric pressure P(atm) = 29.1 inches of Hg

We know that

1 psi = 6.89 KPa

So 50 psi = 6.89 x 50 KPa

P(gauge)=  50 psi =344.72 KPa

We know that

1 inch = 0.0254 m

29.1 inches = 0.739 m

Atmospheric pressure P(atm) = 0.739 m of Hg

We know that density of Hg =13.6\times 10^3\ kg/m^3

P = ρ g h

P(atm) = 13.6 x 1000 x 9.81 x 0.739 Pa

P(atm) = 13.6  x 9.81 x 0.739 KPa

P(atm) =98.54 KPa

Now

Absolute pressure = Gauge pressure + Atmospheric pressure

P(abs)=P(gauge) + P(atm)

P(abs)= 344.72 KPa + 98.54 KPa

P(abs)= 433.31 KPa

3 0
3 years ago
If a steel cable is rated to take 800-lb and the steel has a yield strength of 90,000psi, what is the diameter of the cable?
goldfiish [28.3K]

Answer:

d = 2.69 mm

Explanation:

Assuming the cable is rated with a factor of safety of 1.

The stress on the cable is:

σ = P/A

Where

σ = normal stress

P: load

A: cross section

The section area of a circle is:

A = π/4 * d^2

Then:

σ = 4*P / (π*d^2)

Rearranging:

d^2 = 4*P / (π*σ)

d = \sqrt{4*P / (\pi*\sigma)}

Replacing:

d = \sqrt{4*800 / (\pi*\90000)} = 0.106 inches

0.106 inches = 2.69 mm

5 0
3 years ago
The inspector should inspect insulation in unfinished spaces, including attics, _____ and foundation areas.
RoseWind [281]

Answer:

basements

Explanation:

6 0
2 years ago
Maintain a distance of at least
Virty [35]
The answer is c. 4 seconds
8 0
3 years ago
Read 2 more answers
Other questions:
  • Effect of feedback on the plant is to a) Control system transient response b) Reduce the sensitivity to plant parameter variatio
    15·1 answer
  • Question 11 (1 point)
    12·1 answer
  • A three-phase transformer bank consists of 3 single-phase transformers to handle 400 kVA witha 34.5kV/13.8kV voltage ratio. Find
    7·1 answer
  • 5b. The object George is examining has a mass of 15 grams. What is<br> the density of the object?
    5·1 answer
  • What is the lowest Temperature in degrees C?, In degrees K? in degrees F? in degrees R
    5·1 answer
  • The line touching the circle at a point ....................... is known as ........................... .
    12·1 answer
  • By using a book of the OHS Act, Act 85 of 1993, find the act or regulation where the following extraction comes from "every empl
    12·1 answer
  • 1. A hydro facility operates with an elevation difference of 50 m and a flow rate of 500 m3/s. If the rotational speed is 90 RPM
    12·1 answer
  • Jade wanted to test the effect of ice on the weathering of rocks. She filled two containers with gypsum and placed a water ballo
    12·1 answer
  • A wheel spins at a constant angular speed of 24rad/s.How many revolutions will the dosk go through in 5minutes?​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!