*l Take in air and fuel (Intake)
*l Compress (squeeze) the air and fuel (Compression)
*l Ignite and burn the air-and-fuel mixture (Power)
*l Get rid of the burned fuel gases (Exhaust)The Answer is C.Exhaust
M = mass of aluminium = 1.11 kg
= specific heat of aluminium = 900
= initial temperature of aluminium = 78.3 c
m = mass of water = 0.210 kg
= specific heat of water = 4186
= initial temperature of water = 15 c
T = final equilibrium temperature = ?
using conservation of heat
Heat lost by aluminium = heat gained by water
M
(
- T) = m
(T -
)
(1.11) (900) (78.3 - T) = (0.210) (4186) (T - 15)
T = 48.7 c
Answer:
The mass of the child + skateboard is 50 kg
Explanation:
In this problem, we can apply Newton's second law:
F = ma
where
F is the net force on a system
m is the mass of the system
a is the acceleration of the system
In this problem, our system is the child + the skateboard. The net force on them is
F = 75 N
and their acceleration is

So we can re-arrange the equation above to find their combined mass:

Answer:
∆T = Mv^2Y/2Cp
Explanation:
Formula for Kinetic energy of the vessel = 1/2mv^2
Increase in internal energy Δu = nCVΔT
where n is the number of moles of the gas in vessel.
When the vessel is to stop suddenly, its kinetic energy will be used to increase the temperature of the gas
We say
1/2mv^2 = ∆u
1/2mv^2 = nCv∆T
Since n = m/M
1/2mv^2 = mCv∆T/M
Making ∆T subject of the formula we have
∆T = Mv^2/2Cv
Multiple the RHS by Cp/Cp
∆T = Mv^2/2Cv *Cp/Cp
Since Y = Cp/CV
∆T = Mv^2Y/2Cp k
Since CV = R/Y - 1
We could also have
∆T = Mv^2(Y - 1)/2R k