Answer:
international air transport association
To solve this problem we will apply the concepts related to the electric field. This is defined as the product between the angular frequency, the number of turns of the body (solenoid in this case) the magnetic field and the sine of the angular frequency and time. Mathematically this can be described as

Here,
= Angular frequency
N = Number of turns
B = Magnetic field
The emf has its maximum value when 
Thus the amplitude of the emf is

When number of turns of armature, area and applied magnetic field remains constant, induced emf is proportional to angular speed.

Further it can be written as follows,




Therefore the maximum amplitude of induced emf when armature rotates at 10.0rad/s is 18V
Answer:
592000 J
Explanation:
We'll begin by converting 3.7×10⁵ Pa to Kg/ms². This can be obtained as follow:
1 Pa = 1 Kg/ms²
Therefore,
3.7×10⁵ Pa = 3.7×10⁵ Kg/ms²
Next, we shall determine the workdone.
Workdone is given by the following equation:
Workdone (Wd) = pressure (P) × change in volume (ΔV)
Wd = PΔV
With the above formula, the work done can be obtained as follow:
Pressure (P) = 3.7×10⁵ Kg/ms²
Change in volume (ΔV) = 1.6 m³
Workdone (Wd) =?
Wd = PΔV
Wd = 3.7×10⁵ × 1.6
Wd = 592000 Kgm²/s²
Finally, we shall convert 592000 Kgm²/s² to Joule (J). This can be obtained as follow:
1 Kgm²/s² = 1 J
Therefore,
592000 Kgm²/s² = 592000 J
Therefore, the Workdone is 592000 J.
Answer:
22 revolutions
Explanation:
2 rev/s = 2*(2π rad/rev) = 12.57 rad/s
The angular acceleration when it starting

The angular acceleration when it stopping:

The angular distance it covers when starting from rest:


The angular distance it covers when coming to complete stop:


So the total angular distance it covers within 22 s is 62.8 + 75.4 = 138.23 rad or 138.23 / (2π) = 22 revolutions