Answer:
v= s/t
Explanation:
250 km/ h =69.44m/s
S1=2 times 69.44 ≈ 139m
Next 2.5 seconds:
S2 = 100m
Average speed:
v=139m+100m/2s+2.5s = 239/4.5s = 53.2 m/s=192km/h
Answer:
c. initial (x and y)
Explanation:
When a projectile is launched at a velocity with a launch angle, to solve it, we must first resolve the initial velocity into the x and y components. To do this will mean we have to treat it like a triangle due to the launch angle and the direction of the projectile.
Therefore, we will have to make use of trigonometric ratios which is also known by the mnemonic "SOH CAH TOA"
Thus, this method resolves the initial x and y velocities.
Answer:
71.85 m/s
Explanation:
Given the following :
Length of skid marks left by jaguar (s) = 290 m
Skidding Acceleration (a) = - 8.90m/s²
Final velocity of jaguar (v) = 0
Speed of Jaguar before it Began to skid =?
Hence, initial speed of jaguar could be obtained using the formula :
v² = u² + 2as
Where
v = final speed of jaguar ; u = initial speed of jaguar(before it Began to skid) ; a = acceleration of jaguar ; s = distance /length of skid marks left by jaguar
0² = u² + (2 × (-8.90) × 290)
0 = u² + (-5,162)
u² = 5162
Take the square root of both sides
u = √5162
u = 71.847 m/s
u = 71.85m/s
Answer:
(a) 104 N
(b) 52 N
Explanation:
Given Data
Angle of inclination of the ramp: 20°
F makes an angle of 30° with the ramp
The component of F parallel to the ramp is Fx = 90 N.
The component of F perpendicular to the ramp is Fy.
(a)
Let the +x-direction be up the incline and the +y-direction by the perpendicular to the surface of the incline.
Resolve F into its x-component from Pythagorean theorem:
Fx=Fcos30°
Solve for F:
F= Fx/cos30°
Substitute for Fx from given data:
Fx=90 N/cos30°
=104 N
(b) Resolve r into its y-component from Pythagorean theorem:
Fy = Fsin 30°
Substitute for F from part (a):
Fy = (104 N) (sin 30°)
= 52 N