Answer:
TRY HARD!
Explanation:
DO UR WORK ANG GET IT DONE!
Answer:
Intertidal zone
Neritic zone
Open-ocean zone
Note: the correct questions are found below;
In which zone do you find marshes and mangrove forests?
In which zone are plankton plentiful, providing plenty of food for the fish that live there?
In which zone would you find very little plant or animal life compared to other zones?
Explanation:
The intertidal zone, sometimes called the littoral zone, is the area of the marine shoreline that is exposed to air at low tide, and covered with seawater when the tide is high. Intertidal zonation refers to the tendency of plants and animals to form distinct communities between the high and low tide lines. Some microclimates in the littoral zone are moderated by local features and larger plants such as mangroves.
The neritic zone is the region of shallow water (200 meters depth) above the continental shelf where light penetrates to the sea floor.
Due to the abundant supply of sunlight and nutrients such as plankton in this zone, it is the most productive ocean zone supporting the vast majority of marine life.
The open oceans or pelagic ecosystems are the areas away from the coastal boundaries and above the seabed. It encompasses the entire water column and lies beyond the edge of the continental shelf. It extends from the tropics to the polar regions and from the sea surface to the abyssal depths.
<span>The glycine molecules can bind together and release a molecule of water by the process of condensation. Water would then be considered a by-product of the reaction. Condensation can also be seen when water in the air touches a container filled with cold liquid and you see water drops on the side of the glass.</span>
C.
It is the only thing that is making a new thing, and not breaking or taking apart something that is already there.
Answer : The equilibrium concentration of CO in the reaction is, 
Explanation :
The given chemical reaction is:

The expression for equilibrium constant is:
![K_c=\frac{[COCl_2]}{[CO][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCOCl_2%5D%7D%7B%5BCO%5D%5BCl_2%5D%7D)
As we are given:
Concentration of
at equilibrium = Concentration of 
So,
![K_c=\frac{[Cl_2]}{[CO][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCl_2%5D%7D%7B%5BCO%5D%5BCl_2%5D%7D)
![K_c=\frac{1}{[CO]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B1%7D%7B%5BCO%5D%7D)
![1.2\times 10^3=\frac{1}{[CO]}](https://tex.z-dn.net/?f=1.2%5Ctimes%2010%5E3%3D%5Cfrac%7B1%7D%7B%5BCO%5D%7D)
![[CO]=8.3\times 10^{-4}M](https://tex.z-dn.net/?f=%5BCO%5D%3D8.3%5Ctimes%2010%5E%7B-4%7DM)
Therefore, the equilibrium concentration of CO in the reaction is, 