In order to determine the concentration of ammonium ions in
the solution prepared by mixing solutions of ammonium sulfate, (NH4)2SO4, and ammonium
nitrate, first calculate the amount of ammonium ions for each solution.<span>
<span>For ammonium sulfate sol'n: 0.360 L x 0.250 mol(NH4)2SO4/ L x 2 mol NH4+ /1 mol(NH4)2SO4 =
0.18 mol NH4+
<span>For ammonium nitrate sol'n: 0.675 x 1.2 mol NH4NO3/L x 1 mol NH4+ /1 molNH4NO3
= 0.81 mol NH4+
Thus, the amount of NH4+ ions is (0.18 + 0.81) mol or 0.99
mol NH4+. To get the concentration, multiply this to the volume of solution
which is assumed to be additive, such that:</span></span></span>
M NH4+ in sol’n = 0.99 mol NH4+/1.035 L = 0.9565 mol NH4+/ L
sol’n
Answer:
a simple voltaic cell is made by immersing one zinc plate and one copper plate inside water diluted sulfuric acid solution.
The m/z and relative abundance of the ions contributed to the peak at 21.876 min. The relative abundance will be 21.876%.
<h3>
What is relative abundance?</h3>
- The proportion of atoms with a particular atomic mass present in an element sample taken from a naturally occurring sample is known as the relative abundance of an isotope.
- When the relative abundances of an element's isotopes are multiplied by their atomic masses and the results are added up, the result is the element's average atomic mass, which is a weighted average.
- Chemists often divide the number of atoms in a particular isotope by the sum of the atoms in all the isotopes of that element, then multiply the result by 100 to determine the percent abundance of each isotope in a sample of that element.
To learn more about relative abundance with the given link
brainly.com/question/1594226
#SPJ4
The balanced chemical equation is :
5P₄ + 36OH → 12HPO₃⁻² (aq) + 8PH₃ (acidic)
Here the oxidation number of P changed from 0 to -3 in PH₃ and increases from 0 to +3 in HPO₃⁻². When P₄ changes to PH₃ reduction reaction is taking place as there is addition of hydrogen and when P₄ changes to HPO₃⁻² oxidation takes place as there is addition of oxygen.
Thus clearly both reduction and oxidation are taking place.
Thus, we can infer that here P₄ is both oxidizing as well as reducing agent.
To know more about oxidation number here:
brainly.com/question/13182308
#SPJ4
Answer: The molarity of the solution is 0.125 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
where,
n = moles of solute
= volume of solution in L
moles of
=
Now put all the given values in the formula of molality, we get
Therefore, the molarity of the solution is 0.125 M