Answer:
5.52 g
Explanation:
First we <u>convert the given masses of both reactants into moles</u>, using their <em>respective molar masses</em>:
- 6.30 g NH₃ ÷ 17 g/mol = 0.370 mol NH₃
- 1.80 g O₂ ÷ 32 g/mol = 0.056 mol O₂
Now we <u>calculate with how many NH₃ moles would 0.056 O₂ moles react</u>, using the<em> stoichiometric coefficients</em>:
- 0.056 mol O₂ *
= 0.045 mol NH₃
As there more NH₃ moles than required, NH₃ is the excess reactant.
Then we calculate how many NH₃ moles remained without reacting:
- 0.370 mol NH₃ - 0.045 mol NH₃ = 0.325 mol NH₃
Finally we convert NH₃ moles into grams:
- 0.325 mol NH₃ * 17 g/mol = 5.52 g
Answer:
Explanation:
<u>1. Word equation:</u>
- <em>mercury(II) oxide → mercury + oxygen </em>
<u>2. Balanced molecular equation:</u>
<u>3. Mole ratio</u>
Write the ratio of the coefficients of the substances that are object of the problem:

<u>4. Calculate the number of moles of O₂(g)</u>
Use the equation for ideal gases:

<u>5. Calculate the number of moles of HgO</u>

<u>6. Convert to mass</u>
- mass = # moles × molar mass
- molar mass of HgO: 216.591g/mol
- mass = 0.315mol × 216.591g/mol = 68.3g
Answer:
The coefficient of Ca(OH)2 is 1
Explanation:
Step 1: unbalanced equation
Ca(OH)2 + HNO3 → Ca(NO3)2 + H2O
Step 2: Balancing the equation
On the right side we have 2x N (in Ca(NO3)2 ) and 1x N on the left side (in HNO3). To balance the amount of N on both sides, we have to multiply HNO3 by 2.
Ca(OH)2 + 2HNO3 → Ca(NO3)2 + H2O
On the left side we have 4x H (2xH in Ca(OH)2 and 2x H in HNO3), on the right side we have 2x H (in H2O). To balance the amount of H on both sides, we have to multiply H2O on the right side, by 2.
Now the equationis balanced.
Ca(OH)2 + 2HNO3 = Ca(NO3)2 + 2H2O
The coefficient of Ca(OH)2 is 1
Um i think gold... i think?
Convection is the transfer of heat by liquid.