If Ka for HCN is 6. 2×10^−10 at 25 °C, then the value of Kb for cn− at 25 °C is 1.6 × 10^(-5).
<h3>What is base dissociation constant? </h3><h3 />
The base dissociation constant (Kb) is defined as the measurement of the ions which base can dissociate or dissolve in the aqueous solution. The greater the value of base dissociation constant greater will be its basicity an strength.
The dissociation reaction of hydrogen cyanide can be given as
HCN --- (H+) + (CN-)
Given,
The value of Ka for HCN is 6.2× 10^(-10)
The correlation between base dissociation constant and acid dissociation constant is
Kw = Ka × Kb
Kw = 10^(-14)
Substituting values of Ka and Kw,
Kb = 10^(-14) /{6.2×10^(-10) }
= 1.6× 10^(-5)
Thus, the value of base dissociation constant at 25°C is 1.6 × 10^(-5).
learn more about base dissociation constant :
brainly.com/question/9234362
#SPJ4
Due to lava which heats water where water vapour is comes
Answer:
....,................................
Explanation:
1= A
2=D
3=C
4=C
The reaction between oxygen, O2, and hydrogen, H2, to produce water can be expressed as,
2H2 + O2 --> 2H2O
The masses of each of the reactants are calculated below.
2H2 = 4(1.01 g) = 4.04 g
O2 = 2(16 g) = 32 g
Given 1.22 grams of oxygen, we determine the mass of hydrogen needed.
(1.22 g O2)(4.04 g H2 / 32 g O2) = 0.154 g of O2
Since there are 1.05 grams of O2 then, the limiting reactant is 1.22 grams of oxygen.
<em>Answer: 1.22 g of oxygen</em>
The volume of H₂O = 5 L
<h3>Further explanation</h3>
Given
5L of H₂ and 3L O₂
Reaction
2H₂ (g) + O₂(g) ⇒2H₂O(g)
Required
The volume of H₂O
Solution
Avogadro's hypothesis:
<em>In the same T,P and V, the gas contains the same number of molecules </em>
So the ratio of gas volume will be equal to the ratio of gas moles
mol H₂ = 5, mol O₂ = 3
From equation, mol ratio H₂ : O₂ = 2 : 1, so :

mol H₂O based on mol H₂, and from equation mol ratio H₂ : H₂O=2 : 2, so mol H₂O = 5 mol and the volume also 5 L