The current that would pass through the 30 ohms resistor is 2 A.
<h3>What is electric current?</h3>
Electric current is the rate of flow of electric charge round a conductor.
To calculate the electric current that would pass through the 30 ohms resistor, we use the formula below
Formula:
- I = V/Rt........... Equation 1
Where:
- I = Electric current passing through the 30 ohms resistor
- V = Voltage
- Rt = Total or effective resistance of the resistors.
From the question,
Given:
- V = 100 volts
- Rt = (30+20) ohms (since both resistors are connected in series)
Substitute these values into equation 1
Hence, The current that would pass through the 30 ohms resistor is 2 A.
Learn more about electric current here: brainly.com/question/1100341
-- It takes the brick 8.9 seconds to reach the ground.
-- At the instant of the "splat", it's falling at 89 m/s.
-- The mass doesn't matter. If not for air resistance, every object
would fall at the same rate. The answer is the same for a feather,
a rubber chicken, a brick, or a school bus.
Answer:
The magnitude of the charge on each sphere is 0.135 μC
Explanation:
Given that,
Mass = 1.0
Distance = 2.0 cm
Acceleration = 414 m/s²
We need to calculate the magnitude of charge
Using newton's second law


Put the value of F

Put the value into the formula





Hence, The magnitude of the charge on each sphere is 0.135μC.
Answer:
101.54m/h
Explanation:
Given that the buses are 5mi apart, and that they are both driving at the same speed of 55m/h, rate of change of distance can be determined using differentiation as;
Let l be the be the distance further away at which they will meet from the current points;
#The speed toward each other.

Hence, the rate at which the distance between the buses is changing when they are 13mi apart is 101.54m/h
the correct choice is
C) an electric current.
as a magnet is turned quickly relative to a coil, the magnetic flux linked with coil varies due to variation of angle of direction of magnetic field with normal to the plane of coil. the coil resist this change of magnetic flux in it by inducing emf in it so as to nullify the variation in magnetic flux. Due to this induced emf , electric current flows through the coil.