Answer:
0.61°
Explanation:
Since the box move at constant velocity, it means there is no acceleration then we can say it has a balanced force system.
Pulling force= resistance force
From the formula for pulling force,
F(x)= Fcos(θ)
= 425×cos(35.2)
=347N
The force exerted downward at an angle of 35.2° below the horizontal= Fsin(θ)= 425sin(35.2)
=425×0.567=245N
Resistance force= (325N+ 245N) (α)= 570N(α)
We can now equates the pulling force to resistance force
570 (α)= 347N
(α)= 347/570
= 0.61
The magnetic field direction and direction of induced current in a wire are related by the right hand grip rule. Since the magnetic field was upwards, the thumb points upwards and the fingers curl around it. When viewed from above, it is seen as a current flowing in the counter clockwise direction.
Answer:68.15m/s
Explanation:
<u><em>Given: </em></u>
v₁=15m/s
a=6.5m/s²
v₁=?
x=340m
<u><em>Formula:</em></u>
v₁²=v₁²+2a (x)
<u>Set up:</u>
=
<h2><u><em>
Solution:</em></u></h2><h2><u><em>
68.15m/s</em></u></h2>
<u />
Answer:
Change in mechanical energy = work done by friction
so it is equal to

Explanation:
As we know that change in mechanical energy must be equal to the work done by non conservative forces only
So here when block moves down the inclined plane then the work done by friction force is given as

here we have

here we know that

so we have


Now the friction force on the block is given as



now work done by the friction is given as


Kinetic energy. the electricity makes the fan move. it uses potential energy and converts it into kinetic energy from the electricity.