Density is given as mass / volume.
Mass is the sphere is 100 g.
Volume of the sphere = (pi∗r3)∗4/3
(
p
i
∗
r
3
)
∗
4
/
3
=(4∗22∗3∗3∗3)/(7∗3)cm3
=
(
4
∗
22
∗
3
∗
3
∗
3
)
/
(
7
∗
3
)
c
m
3
=792/7
=
792
/
7
cm3
3
Therefore, Density is 100/(792/7)g/cm3
100
/
(
792
/
7
)
g
/
c
m
3
Which gives: density = 0.883838 g/cm3
g
/
c
m
3
If you want to change the units to kg per cubic metres, then we need to divide this value by 1000( for g to kg) and multiply by 100 * 100 * 100 (for cm to m).
This makes the density to be 883.83 kg/m3
Answer:
pHe = 3.2 × 10⁻³ atm
pNe = 2.5 × 10⁻³ atm
P = 5.7 × 10⁻³ atm
Explanation:
Given data
Volume = 1.00 L
Temperature = 25°C + 273 = 298 K
mHe = 0.52 mg = 0.52 × 10⁻³ g
mNe = 2.05 mg = 2.05 × 10⁻³ g
The molar mass of He is 4.00 g/mol. The moles of He are:
0.52 × 10⁻³ g × (1 mol / 4.00 g) = 1.3 × 10⁻⁴ mol
We can find the partial pressure of He using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.3 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 3.2 × 10⁻³ atm
The molar mass of Ne is 20.18 g/mol. The moles of Ne are:
2.05 × 10⁻³ g × (1 mol / 20.18 g) = 1.02 × 10⁻⁴ mol
We can find the partial pressure of Ne using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.02 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 2.5 × 10⁻³ atm
The total pressure is the sum of the partial pressures.
P = 3.2 × 10⁻³ atm + 2.5 × 10⁻³ atm = 5.7 × 10⁻³ atm
An electrolyte is a substance that produces an electrically conducting solution when dissolved in a polar solvent, such as water. The dissolved electrolyte separates into cations and anions, which disperse uniformly through the solvent. Electrically, such a solution is neutral.
Hope this helps!!
:)
Answer:
Catalysts
Explanation:
Catalysts lower the aviation energy.
Molarity is moles divided by liters so do .732 divided by .975 liters.