✿ Transpiration is the process by which water is carried through plants from roots and release water vapor through their leaves.
✿ Cutting down trees can decrease the amount of water vapor entering the air through the processes of <u>Transpiration</u>
As per the question, the point charge is given as [q] = 6.8 C
The velocity of the charged particle [v] = 
The magnetic field [B] = 1.4 T
The angle made between magnetic field and velocity
= 15 degree.
We are asked to calculate the magnetic force experienced by the charged particle.
The magnetic force experienced by the charged particle is calculated as -
Magnetic force 
i.e F = 





Hence, the force experienced by the charged particle is C i.e 
Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
(1)
Where:
- Impulse, in kilogram-meters per second.
- Mass, in kilograms.
- Initial velocity of the hockey park, in meters per second.
- Final velocity of the hockey park, in meters per second.
If we know that
,
and
, then the impulse applied by the stick to the park is approximately:
![I = (0.2\,kg)\cdot \left(35\,\hat{i}\right)\,\left[\frac{m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%20%280.2%5C%2Ckg%29%5Ccdot%20%5Cleft%2835%5C%2C%5Chat%7Bi%7D%5Cright%29%5C%2C%5Cleft%5B%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%5D)
![I = 7\,\hat{i}\,\left[\frac{kg\cdot m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%207%5C%2C%5Chat%7Bi%7D%5C%2C%5Cleft%5B%5Cfrac%7Bkg%5Ccdot%20m%7D%7Bs%7D%20%5Cright%5D)
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
There is a repulsive force between two charged objects when they are of like charges/ they are likely charged (like charges repel each other)