Explanation:
1. Boyle's Law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
(At constant temperature and number of moles)

2. Charles' Law states that volume is directly proportional to the temperature of the gas at constant pressure and number of moles.
(At constant pressure and number of moles

3. Gay Lussac's Law states that tempertaure is directly proportional to the pressure of the gas at constant volume and number of moles of gas
(At constant volume and number of moles)

Weighs 0.001836 gram per cubic centimeter or 1.836 kilogram per cubic meter
Try to see if this helps
Answer:
The criteria listed in order of importance are;
1) To be inflated in the event of a collision in order to protect the occupants of the front of the vehicle
2) To be able to withstand the load of the breaking force of the occupants in the front seat of the vehicle during a collision
3) To be relatively tough so as to resist being torn on impact with a sharp object
The constraints listed in order of importance are;
1) How is the model design able to sense a collision that requires the airbag to be inflated
2) The uncertainty of the load the airbag will withstand upon collision
3) The possible hazard that could be caused by the gas used to inflate the airbag
4) The usage/interaction tendency between the vehicle occupant and the airbag system
Explanation:
In order to produce an effective design, it is important to be able to foresee the possible deficiencies of an idea so as to be able to mitigate the problems before an actual incident happens.
The central vacuole stores materials, wastes, and helps give the plant structure and support.
Hope this helps!
Answer:
C₃H₄O₄
Explanation:
In order to get the empirical formula of a compound, we have to follow a series of steps.
Step 1: Divide the percent by mass of each element by its atomic mass.
C: 34.6/12.01 = 2.88
H: 3.9/1.01 = 3.86
O: 61.5/16.00 = 3.84
Step 2: Divide all the numbers by the smallest one, i.e., 2.88
C: 2.88/2.88 = 1
H: 3.86/2.88 ≈ 1.34
O: 3.84/2.88 ≈ 1.33
Step 3: Multiply all the numbers by a number that makes all of them integer
C: 1 × 3 = 3
H: 1.34 × 3 = 4
O: 1.33 × 3 = 4
The empirical formula is C₃H₄O₄.