I suspect that the pressure of this change is constant therefore
The equation is used from the combined gas law. (When pressure is constant both P's will cancel out P/P = 1)
V/T = V/T
Initial Change
Initially we have 2L at 20 degress what temperature will be at 1L.
2/20 = 1/T
0.1 = 1/T
0.1T = 1
T = 1/0.1
T = 10 degress celsius.
Hope this helps if you won't be able to understand what is the combined gas law just tell me :).
Grass planting, laying of straw , putting up sediment fenced or knee high black fabric fences can help reduce no point source water pollution
It's lone a little distinction (103 degrees versus 104 degrees in water), and I trust the standard rationalization is that since F is more electronegative than H, the electrons in the O-F bond invest more energy far from the O (and near the F) than the electrons in the O-H bond. That moves the powerful focal point of the unpleasant constrain between the bonding sets far from the O, and thus far from each other. So the shock between the bonding sets is marginally less, while the repugnance between the solitary matches on the O is the same - the outcome is the edge between the bonds is somewhat less.
Answer:
Fault-block mountain
In geography, fault-block mountains arise when the Earth's crust pulls apart and divides. Some parts of the Earth are pushed upwards whereas the other moves downward forming a divergent boundary. In geological studies, a divergent boundary can be described as a linear feature which arises due to plate tectonics which are being pulled apart from each other. Hence, fault-block mountains are most likely to be seen in a divergent boundary.
Most active divergent plate boundaries occur between oceanic plates and exist as mid-oceanic ridges. Divergent boundaries also form volcanic islands, which occur when the plates move apart to produce gaps that molten lava rises to fill.
<u>Answer:</u> The fugacity coefficient of a gaseous species is 1.25
<u>Explanation:</u>
Fugacity coefficient is defined as the ratio of fugacity and the partial pressure of the gas. It is expressed as 
Mathematically,

Partial pressure of the gas is expressed as:

Putting this expression is above equation, we get:

where,
= fugacity coefficient of the gas
= fugacity of the gas = 25 psia
= mole fraction of the gas = 0.4
P = total pressure = 50 psia
Putting values in above equation, we get:

Hence, the fugacity coefficient of a gaseous species is 1.25