Answer:
³⁸₂₀Ca.
Explanation:
³⁸₁₉K –> __ + ⁰₋₁β
Let ʸₓA represent the unknown.
Thus the equation above can be written as:
³⁸₁₉K –> ʸₓA + ⁰₋₁β
Thus, we can obtain the value of y an x as follow:
38 = y + 0
y = 38
19 = x + (–1)
19 = x – 1
Collect like terms
19 + 1 = x
x = 20
Thus,
ʸₓA => ³⁸₂₀A => ³⁸₂₀Ca
Therefore, the equation is:
³⁸₁₉K –> ³⁸₂₀Ca + ⁰₋₁β
<u>Answer:</u> The molality of the solution is 0.1 m.
<u>Explanation:</u>
To calculate the molality of solution, we use the equation:

Where,
= Given mass of solute = 27.1 g
= Molar mass of solute = 27.1 g/mol
= Mass of solvent = 100 g
Putting values in above equation, we get:

Hence, the molality of the solution is 0.1 m.
Fold mountains<span> are </span>mountains<span> that form mainly by the effects of </span>folding<span> on layers within the upper part of the Earth's crust. Before either plate tectonic theory developed, or the internal architecture of thrust belts became well understood, the term was used for most</span>mountain<span> belts, such as the Himalayas.</span>
The energy increases because the molecules in water move faster
Answer:
CH3COOH would be more concentrated
Explanation:
The higher the concentration value, the more concentrated it is.
The relationship between concentration, moles and volume is given by the equation;
Concentration = No of moles / Volume
5.0 grams of HCOOH dissolved in 189 mL of water
Number of moles = Mass / Molar mass = 5 / 46.03 = 0.1086 mol
Concentration = 0.1086 / 0.189 = 0.5746 mol/L
1.5 moles of CH3COOH dissolved in twice as much water
Volume = 2 * 189 = 378 ml = 0.378 L
Concentration = 1.5 / 0.378 = 3.9683 mol/L
Comparing both concentration values;
CH3COOH would be more concentrated