Answer:
20N
Explanation:
Given parameters:
Force(N) Acceleration(m/s²)
10 0.2
? 0.4
Unknown:
The force applied when the acceleration is 0.4m/s²
Solution:
From newton's second law of motion;
Force = mass x acceleration
Since we are using the same box, let us find the mass of the box;
Force = mass x acceleration
10 = mass x 0.2
mass =
= 50kg
Now,
The force in the second instance will be;
Force = 50 x 0.4 = 20N
Answer:
B- gravity
Explanation:
Gravity is a force in which everything in the universe is trying to pull everyother thing towards themsef. Here, the sun's gravity keeps the planet in orbit.
I hope im right! !!
Answer: 581 gmol
0.581 kmol

Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:

1. The conversion for mol to gmol
1 mol = 1 gmol
581 mol= 
2. The conversion for mol to kmol
1 mol = 0.001 kmol
581 mol= 
3. The conversion for mol to lbmol
1 mol = 
581 mol= 
Answer : The correct option is, (2) Energy is absorbed as bonds are broken.
Explanation :
As we know that the bonds are formed and breaks during the chemical reaction. Some energy is released or absorbed when the bonds are formed and breaks during the chemical reaction.
During the bond breaking, some energy is required to break the bonds.
During the bond formation, some energy is released to the formation of the bonds.
In the given reaction, the bond between the hydrogen-hydrogen in
are breaking into two hydrogen. That means during the bond breaking, some energy is required or absorbed to break the bonds.
Hence, the correct option is, (2) Energy is absorbed as bonds are broken.
<u>Answer:</u> The
for the reaction is 54.6 kJ/mol
<u>Explanation:</u>
For the given balanced chemical equation:

We are given:

- To calculate
for the reaction, we use the equation:
![\Delta G^o_{rxn}=\sum [n\times \Delta G_f(product)]-\sum [n\times \Delta G_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G_f%28reactant%29%5D)
For the given equation:
![\Delta G^o_{rxn}=[(2\times \Delta G^o_f_{(COCl_2)})]-[(1\times \Delta G^o_f_{(CO_2)})+(1\times \Delta G^o_f_{(CCl_4)})]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28COCl_2%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28CO_2%29%7D%29%2B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28CCl_4%29%7D%29%5D)
Putting values in above equation, we get:
![\Delta G^o_{rxn}=[(2\times (-204.9))-((1\times (-394.4))+(1\times (-62.3)))]\\\Delta G^o_{rxn}=46.9kJ=46900J](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-204.9%29%29-%28%281%5Ctimes%20%28-394.4%29%29%2B%281%5Ctimes%20%28-62.3%29%29%29%5D%5C%5C%5CDelta%20G%5Eo_%7Brxn%7D%3D46.9kJ%3D46900J)
Conversion factor used = 1 kJ = 1000 J
- The expression of
for the given reaction:

We are given:

Putting values in above equation, we get:

- To calculate the Gibbs free energy of the reaction, we use the equation:

where,
= Gibbs' free energy of the reaction = ?
= Standard gibbs' free energy change of the reaction = 46900 J
R = Gas constant = 
T = Temperature = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
= equilibrium constant in terms of partial pressure = 22.92
Putting values in above equation, we get:

Hence, the
for the reaction is 54.6 kJ/mol