Answer:
The chlorine gas and potassium bromide solution react to form liquid bromine and potassium chloride solution.
Explanation:
Chemical equation:
Cl₂(g) + KBr (aq) → KCl (aq) + Br₂(l)
Balanced chemical equation:
Cl₂(g) + 2KBr (aq) → 2KCl (aq) + Br₂(l)
This equation showed that the chlorine gas and potassium bromide solution react to form liquid bromine and potassium chloride solution.
Chlorine is more reactive than bromine it displace the bromine from potassium and form potassium chloride solution.
The given equation is balanced and completely hold the law of conservation of mass.
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Answer: (C) conservation of matter
Solution: Law of conservation of matter or mass states that' total mass of the reactants should always be equal to the total mass of the product that is the total mass is remained conserved in a chemical reaction.
A balanced chemical equation always follow this law.
For example:

Mass of hydrogen = 1 g/mol
Mass of Oxygen = 16 g/mol
Total mass on the reactants = 2(2×1)+(2×16)= 36g/mol
Total mass on the product side = 2[(2×1) +16] = 36 g/mol
As,
Mass on reactant side = Mass on the product side
Therefore, a balanced chemical reaction follows Law of Conservation of mass.
Answer:
Two Sections that contain nitrogen of a nucleotide that bond together to connect strands of DNA or RNA.
Explanation:
Answer:
pH = 4.34
Explanation:
pH= -1/2(logKa) -1/2(log C)
= -1/2( log 5.98*10^-8) -1/2(log 0.0353)
=-1/2(-7.22)-1/2(-1.45)
=3.61+0.725= 4.34