Answer:
The reaction is not spontaneous in the forward direction, but in the reverse direction.
Explanation:
<u>Step 1: </u>Data given
H2(g) + I2(g) ⇌ 2HI(g) ΔG° = 2.60 kJ/mol
Temperature = 25°C = 25+273 = 298 Kelvin
The initial pressures are:
pH2 = 3.10 atm
pI2 = 1.5 atm
pHI 1.75 atm
<u>Step 2</u>: Calculate ΔG
ΔG = ΔG° + RTln Q
with ΔG° = 2.60 kJ/mol
with R = 8.3145 J/K*mol
with T = 298 Kelvin
Q = the reaction quotient → has the same expression as equilibrium constant → in this case Kp = [p(HI)]²/ [p(H2)] [p(I2)]
with pH2 = 3.10 atm
pI2 = 1.5 atm
pHI 1.75 atm
Q = (3.10²)/(1.5*1.75)
Q = 3.661
ΔG = ΔG° + RTln Q
ΔG = 2600 J/mol + 8.3145 J/K*mol * 298 K * ln(3.661)
ΔG =5815.43 J/mol = 5.815 kJ/mol
To be spontaneous, ΔG should be <0.
ΔG >>0 so the reaction is not spontaneous in the forward direction, but in the reverse direction.
Answer:
In general an acid reacts with a carbonate or hydrogen-carbonate to produce a salt, carbon dioxide gas and water.
Answer:
Calculate the atomic radii of two touching or overlapping atoms.
Explanation:
No doubt, we can't find the atomic boundary of a single atom, but when atoms are in the form of pairs it becomes very easy to measure the atomic radii of two and then dividing it by 2 to get an estimate of atomic radius of a single atom.
It is also called as covalent radius which is half of the total inter-nuclear distance between two same bonded atoms (Homo-nuclear).
If two adjacent mettalic ions are joined by such pairing then the same half of the distance between the nucleus is termed as metallic radii.
Yes it is for example look at Iodine and Tellurium.
Hope this helps :).