Answer:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops, then <u>the specific heats of both objects will be equal.</u>
Explanation:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops when the two<u> objects of same mass</u> are brought into contact, then their specific heat capacity is equal.
<u>We can prove this by the equation of heat for the two bodies:</u>
<em>According to given condition,</em>


<em>when there is no heat loss from the system of two bodies then </em>


- Thermal conductivity is ultimately affects the rate of heat transfer, however the bodies will attain their final temperature based upon their mass and their specific heat capacities.
The temperature of the colder object will rise twice as much as the temperature of the hotter object only in two cases:
- when the specific heat of the colder object is half the specific heat of the hotter object while mass is equal for both.
OR
- the mass of colder object is half the mass of the hotter object while their specific heat is same.
Answer:42.43m/s
Explanation:According to vf=vi+at, we can calculate it since v0 equals to 0. vf=0+9.8m/s^2*4.33s= 42.434m/s
Endoskeleton- an internal skeleton, such as the bony or cartilaginous skeleton of vertebrates.
Exoskeleton- a rigid external covering for the body in some invertebrates animals, especially Arthropods, providing both support and protection.
Answer:
Negative intrapleural pressure is the correct answer
Explanation:
Intrapleural pressure is more subatmospheric in the uppermost part of the thorax than in the lowermost parts in the standing horse.
Air moves from a region of higher pressure to one of lower pressure. Therefore, for air to be moved into or out of the lungs, a pressure difference between the atmosphere and the alveoli must be established. If there is no pressure difference, no airflow will occur.
Under normal circumstances, inspiration is accomplished by causing alveolar pressure to fall below atmospheric pressure. When the mechanics of breathing are being discussed, atmospheric pressure is conventionally referred to as 0 cm H2O, so lowering alveolar pressure below atmospheric pressure is known as negative-pressure breathing.
Using coils of fewer turns on the electromagnet