Answer:
Explanation:
Using the law of conservation of momentum;

here;
There is a need for conservation of the total momentum that occurred before and after the collision.
So;
= mass of cart X
= mas 9f cart Y
= velocity of cart X (before collision)
= velocity of cart Y (before collision)
= velocity of cart X (after collision)
= velocity of cart Y (after collision)
So;

because the mass is identical and v represents the velocity of both carts.
Now;
= 2 m/s
= 0 ( at rest)
∴
m(2) = (2m)v
v = 1 m/s
Thus, we can see from the graphical image attached below that the velocity of X reduces to 1 m/s after collision with cart Y.
Answer:
B (force = mass X acceleration)
Explanation:
The acceleration of an object depends on the mass of the object and the amount of force applied. His second law defines a force to be equal to change in momentum (mass times velocity) per change in time.
Formula: F = m x a
Answer:
(a) Force must be grater than 283.87 N
(B) Force will be equal to 193.945 N
Explanation:
We have given mass of the crate m = 49.6 kg
Acceleration due to gravity 
Coefficient of static friction 
Coefficient of kinetic friction 
(a) Static friction force is given by 
So to just start the crate moving we have to apply more force than 283.87 N
(B) This force will be equal to kinetic friction force
We know that kinetic friction force is given by 
Answer:
18 radians
Explanation:
The computation is shown below:
As we know that
Torque = Force × Moment arm
= 1N × 1M
= 1N-M
Torque = 

Now

Here t = 1 minutes = 60 seconds