The answer is <span>temperature, salinity
Hope this helps. :)</span>
Answer:
The correct answer is d
Explanation:
In this exercise they ask us which statement is correct, for this we plan the solution of the problem, this is a Doppler effect problem, it is the frequency change due to the relative speed between the emitter and the receiver of sound.
The expression for the Doppler effect of a moving source is
f ’= (v / (v- + v_s) f
From this expression we see that if the speed the sound source is different from zero feels a change in the frequency.
The correct answer is d
Answer:
The speed Clyde will be falling at is 33.72.
Answer:
The gravitational potential energy of the nickel at the top of the monument is 8.29 J.
Explanation:
We can find the gravitational potential energy using the following formula.

Identifying given information.
The nickel has a mass
, and it is a the top of Washington Monument.
The Washington Monument has a height of
, thus we need to find the equivalence in meters using unit conversion in order to find the gravitational potential energy.
Converting from feet to meters.
Using the conversion factor 1 m = 3.28 ft, we have

That give u s

Finding Gravitational Potential Energy.
We can replace the height and mass on the formula

And we get


The gravitational potential energy of the nickel at the top of the monument is 8.29 J.
Answer:
1) The force Christian can exert on his bicycle before picking up the the cargo is 529.74 N
2) The force Christian can exert on his bicycle after picking up the the cargo is 647.46 N
Therefore, Christian has to exert more force on his bike after picking up the cargo
Explanation:
The given parameters are;
The mass of Christian and his bicycle = 54 kg
The mass of the cargo = 12 kg
1) The force Christian can exert on his bicycle before picking up the the cargo = Mass of Christian and his bicycle × Acceleration due to gravity
∴ The force Christian can exert on his bicycle before picking up the the cargo = 54 kg × 9.81 m/s² = 529.74 N
2) The force Christian can exert on his bicycle after picking up the the cargo = (54 + 12) kg × 9.81 m/s² = 647.46 N
Therefore, Christian has to exert more force on his bike after picking up the cargo.