D. distance = 23 m, displacement = + 1 m
Explanation:
Let's remind the difference between distance and displacement:
- distance is a scalar, and is the total length covered by an object, counting all the movements in any direction
- displacement is a vector connecting the starting point and the final point of a motion, so its magnitude is given by the length of this vector, and its direction is given by the direction of this vector.
In this case, the distance covered by Karen is given by the sum of all its movements:

The displacement instead is given by the difference between the final point (1.0 m in front of the starting line) and the starting point (the starting line, 0 m):

Answer:
Explanation:
Let T be the tension
For linear motion of hoop downwards
mg -T = ma , m is mass of the hoop . a is linear acceleration of CG of hoop .
For rotational motion of hoop
Torque by tension
T x R , R is radius of hoop.
Angular acceleration be α,
Linear acceleration a = α R
So TR = I α
= I a / R
a = TR² / I
Putting this value in earlier relation
mg -T = m TR² / I
mg = T ( 1 + m R² / I )
T = mg / ( 1 + m R² / I )
mg / ( 1 + R² / k² )
Tension is less than mg or weight because denominator of the expression is more than 1.
I think the answer is B but i could be wrong
Positive - Friction allows us to create heat in a desperate situation, like being lost in the woods. If we didn't have friction, we would probably freeze to death.
Negative - Friction can also cause unwanted fires, such as forest fires. If friction didn't exist, we wouldn't have these.
<em>Choice-C</em> is the right one.
-- The bolt didn't react to the magnet, and just laid there. That tells you that the bolt was made of a non-magnetic material.
-- The bolt didn't float. It went straight to the bottom. That tells you that it's more dense than the fluid around it.