1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhenek [66]
3 years ago
15

Calculate the percent ionization of nitrous acid in a solution that is 0.139 M in nitrous acid. The acid dissociation constant o

f nitrous acid is 4.50 ⋅ 10-4.
Chemistry
2 answers:
timama [110]3 years ago
5 0

The percentage dissociation of nitrous acid is \boxed{{\text{5}}{\text{.85\%}}} .

Further explanation:

Chemical equilibrium is the state in which concentration of reactants and products become constant and do not change with time. This is because the rate of forward and backward direction becomes equal. The general equilibrium reaction is as follows:

{\text{A(g)}}+{\text{B(g)}}\rightleftharpoons{\text{C(g)}}+{\text{D(g)}}

Equilibrium constant is the constant that relates the concentration of product and reactant at equilibrium. The formula to calculate the equilibrium constant for general reaction is as follows:

{\text{K}}=\frac{{\left[{\text{D}}\right]\left[{\text{C}}\right]}}{{\left[{\text{A}}\right]\left[ {\text{B}}\right]}}

Here, K is the equilibrium constant.

The equilibrium constant for the dissociation of acid is known as {{\text{K}}_{\text{a}}}  and equilibrium constant for the dissociation of base is known as {{\text{K}}_{\text{b}}} .

Percentage ionization:

When weak acid or base dissolves into the water, it partially dissociates into its ions. The amount of weak acid exists as ions in the solution is known as percentage ionization.

The formula for percentage ionization for a weak acid is,

\% {\text{ ionization}}=\frac{{\left[ {{{\text{H}}_{\text{3}}}{{\text{O}}^{\text{ + }}}}\right]}}{{\left[{{\text{HA}}}\right]}}\times100

Here, \left[{{{\text{H}}_{\text{3}}}{{\text{O}}^{\text{+}}}}\right]  is the concentration of hydronium ion and \left[{{\text{HA}}}\right]  is the concentration of acid.

The nitrous acid is a weak acid that dissociates in water to form {\text{NO}}_2^ -  and hydronium ion.

{\text{HN}}{{\text{O}}_{\text{2}}}\left({aq}\right)+{{\text{H}}_2}{\text{O}}\left(l\right)\rightleftharpoons{\text{NO}}_2^-\left({aq}\right)+{{\text{H}}_{\text{3}}}{{\text{O}}^{\text{+}}}\left({aq}\right)

The expression of {{\text{K}}_{\text{a}}} for the above reaction is as follows:  

[tex{{\text{K}}_{\text{a}}}=\frac{{\left[{{\text{NO}}_2^-}\right]\left[{{{\text{H}}_{\text{3}}}{{\text{O}}^{\text{+}}}}\right]}}{{\left[{{\text{HN}}{{\text{O}}_{\text{2}}}}\right]}}[/tex]                   …... (1)

For nitrous acid, percentage dissociation can be calculated as,

\% {\text{ ionization}}=\frac{{\left[{{{\text{H}}_{\text{3}}}{{\text{O}}^{\text{+}}}}\right]}}{{\left[{{\text{HN}}{{\text{O}}_2}}\right]}}\times100                    …… (2)

The value of {{\text{K}}_{\text{a}}} is {\text{4}}{\text{.50}}\times{\text{1}}{{\text{0}}^{-4}} .

The initial concentration of nitrous acid is 0.139 M.

Let the change in concentration at equilibrium is x. Therefore, the concentration of {\text{HN}}{{\text{O}}_2}  becomes 0139-x at equilibrium. The concentration of {\text{NO}}_2^- and {{\text{H}}_{\text{3}}}{{\text{O}}^{\text{+}}}  ion becomes x at equilibrium.

Substitute x for \left[{{{\text{H}}_{\text{3}}}{{\text{O}}^{\text{+}}}}\right], x for \left[{{\text{NO}}_2^-}\right]  and 0.139-x for {\text{HN}}{{\text{O}}_2} in equation (1).

{{\text{K}}_{\text{a}}}=\frac{{{\text{x}}\times{\text{x}}}}{{0.139-{\text{x}}}}                    …… (3)

Rearrange the equation (3) and substitute {\text{4}}{\text{.50}}\times{\text{1}}{{\text{0}}^{-4}} for {{\text{K}}_{\text{a}}} to calculate value of x.

{{\text{x}}^2}=\left({{\text{4}}{\text{.50}}\times{\text{1}}{{\text{0}}^{-4}}}\right)\left({{\text{0}}{\text{.139}}-{\text{x}}}\right)

The final quadric equation is,

{{\text{x}}^2}-\left({{\text{4}}{\text{.50}}\times{\text{1}}{{\text{0}}^{-4}}}\right){\text{x}}-6.255\times{10^{-5}}=0

After solving the quadratic equation the value of x obtained is,

{\mathbf{x=0}}{\mathbf{.008137}}

The concentration of {{\text{H}}_{\text{3}}}{{\text{O}}^{\text{+}}} is equal to x and therefore the concentration of {{\text{H}}_{\text{3}}}{{\text{O}}^{\text{+}}} is 0.008137 M.

Substitute 0.008137 M for \left[{{{\text{H}}_{\text{3}}}{{\text{O}}^{\text{+}}}}\right]  and 0.139 M for \left[{{\text{HN}}{{\text{O}}_2}}\right]  in equation (2).

\begin{aligned}\%{\text{ ionization}}&=\frac{{0.008137{\text{ M}}}}{{0.139{\text{ M}}}}\times100\\&={\mathbf{5}}{\mathbf{.85\%}}\\\end{aligned}

Learn more:

1. Calculation of equilibrium constant of pure water at 25°c: <u>brainly.com/question/3467841</u>

2. Complete equation for the dissociation of {\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}} (aq): <u>brainly.com/question/5425813</u>

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Chemical equilibrium

Keywords: pH, 0.139 M, solution of nitrous acid, hno2, pOH, equilibrium, percentage dissociation, nitrous acid, 0.008137, and 5.85%.

anzhelika [568]3 years ago
4 0
Ok first, we have to create a balanced equation for the dissolution of nitrous acid.

HNO2 <-> H(+) + NO2(-)

Next, create an ICE table

           HNO2   <-->  H+        NO2-
[]i        0.139M          0M       0M
Δ[]      -x                   +x         +x
[]f        0.139-x          x           x

Then, using the concentration equation, you get

4.5x10^-4 = [H+][NO2-]/[HNO2]

4.5x10^-4 = x*x / .139 - x

However, because the Ka value for nitrous acid is lower than 10^-3, we can assume the amount it dissociates is negligable, 

assume 0.139-x ≈ 0.139

4.5x10^-4 = x^2/0.139

Then, we solve for x by first multiplying both sides by 0.139 and then taking the square root of both sides.

We get the final concentrations of [H+] and [NO2-] to be x, which equals 0.007M.

Then to find percent dissociation, you do final concentration/initial concentration.

0.007M/0.139M = .0503 or 

≈5.03% dissociation.
You might be interested in
The average weather conditions of a region
Verdich [7]

Answer:

A) Climate

Hope this helps !

6 0
3 years ago
What volume of 2.0 M HCl in mL will neutralize 25.0 mL of 1.00 M KOH?
MakcuM [25]
CaVa=CbVb
2xV=1X25
V=25/2
V=12.5ML
3 0
3 years ago
Describe a qualitative test for sulfate in alum crystals using ionic reactions of barium chloride (BaCl2)
Lady bird [3.3K]

A qualitative test for sulfate in alum crystals using ionic reactions of barium chloride (BaCl2) is given Ba²⁺(aq) + SO₄²⁻ (aq)  →   BaSO₄(s).

<h3>What is qualitative test?</h3>

Qualitative test measures changes in color, melting point, odor, reactivity, radioactivity, boiling point, bubble production, and precipitation of the sample.

<h3>Qualitative test for sulfate in alum crystals </h3>

When an aqueous solution of a barium salt (BaCl₂) is mixed with an aqueous solution containing sulfate, a white precipitate of insoluble BaSO₄ forms according to the net ionic equation given below;

Ba²⁺(aq) + SO₄²⁻ (aq)  →   BaSO₄(s)

Thus, a qualitative test for sulfate in alum crystals using ionic reactions of barium chloride (BaCl2) is given Ba²⁺(aq) + SO₄²⁻ (aq)  →   BaSO₄(s).

Learn more about qualitative test here: brainly.com/question/2109763

#SPJ1

8 0
2 years ago
The formula for ammonium carbonate:
Dima020 [189]

Ammonium is NH₄⁺ and Carbonate is CO₃⁻² => Ammonium Carbonate is (NH₄)₂CO₃

6 0
3 years ago
In order to have a contact force acting on an object, the force
Oliga [24]
I believe the answer is C. (must be touching the object)

Someone please correct me if I am wrong.
5 0
3 years ago
Other questions:
  • What are some physical properties of metal
    7·1 answer
  • How do molecules in a solid differ from those in a liquid or gas
    15·1 answer
  • How can you tell if a chemical reaction has occurred?
    8·1 answer
  • Which two functional groups are always found in amino acids?
    15·1 answer
  • The Ksp of calcium carbonate in water at 25 °C is 2.25 x 10-8. CaCO3(s) &lt;----&gt; Ca2+ (aq) + CO3 2- (aq) What is favored at
    5·1 answer
  • PLEASE HELP ME! VERY IMPORTANT<br> SEE ATTACHED
    12·1 answer
  • What is the density of an aqueous solution that is 50.0% KOH by mass and has a KOH concentration of 13.39 M?
    5·1 answer
  • How many times higher is the concentration of H+ in the Hubbard Brook sample than in unpolluted rainwater?
    13·1 answer
  • Which describes a similarity between abiotic and biotic Which describes a similarity between abiotic and biotic factors?
    11·2 answers
  • Helpppooo give answer thanks
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!