Using current technology, useful parallax measurements can only be found for stars up to about 340 light years (100 parsecs) away.
The resultant displacement of the man is 109.77 km in the direction N60°E.
<h3>Displacement</h3>
Displacement is the distance travelled in a specified direction.
To calculate displacement, the straight line from starting point to end point of travel is taken and calculated.
<h3>Resultant displacement of the man </h3>
In the example above, a man walks 95 km, East, then 55 km, north.
The two distances form a right-angled triangle with two sides 95 and 55 units. The hypotenuse gives the resultant displacement, D.
Using Pythagoras rule:
D^2 = 95^2 + 55^2
D^2 = 12050
D = 109.77
Thus, the resultant displacement is 109.77 km
To calculate the direction:
Let the direction be y
y + x = 90°
tan x = 55/95
tanx x = 0.578
x = 30°
Then, y = 90 - 30
y = 60°
Therefore, the resultant displacement of the man is 109.77 km in the direction N60°E.
Learn more about displacement at: brainly.com/question/321442
The average speed is 20.8 m/s
Explanation:
The average speed for the trip is given by:
where
d is the distance covered
t is the time elapsed
For the trip in this problem, we have:
d = 187 km = 187,000 m is the distance travelled
The initial time is 10:00 pm while the arriving time is 12:30 am: this means that the time elapsed is 2.5 hours. Converting into seconds,
Therefore, the average speed for the trip is
Learn more about average speed:
brainly.com/question/8893949
brainly.com/question/5063905
#LearnwithBrainly
Answer:
Explanation:
According to the free-body diagram of the system, we have:
So, we can solve for T from (1):
Replacing (3) in (2):
The electric force () is given by the Coulomb's law. Recall that the charge q is the same in both spheres:
According to pythagoras theorem, the distance of separation (r) of the spheres are given by:
Finally, we replace (5) in (4) and solving for q: