Answer:
A high pitch sound corresponds to a high frequency sound wave and a low pitch sound corresponds to a low frequency sound wave. I hope I got it correct !!
Answer:
v_f = 24.3 m / s
Explanation:
A) In this exercise there is no friction so energy is conserved.
Starting point. On the roof of the building
Em₀ = K + U = ½ m v₀² + m g y₀
Final point. On the floor
Em_f = K = ½ m v_f²
Emo = Em_g
½ m v₀² + m g y₀ = ½ m v_f²
v_f² = v₀² + 2 g y₀
let's calculate
v_f = √(10² + 2 9.8 25)
v_f = 24.3 m / s
Answer:
a) v_average = 11 m / s, b) t = 0.0627 s
, c) F = 7.37 10⁵ N
, d) F / W = 35.8
Explanation:
a) truck speed can be found with kinematics
v² = v₀² - 2 a x
The fine speed zeroes them
a = v₀² / 2x
a = 22²/2 0.69
a = 350.72 m / s²
The average speed is
v_average = (v + v₀) / 2
v_average = (22 + 0) / 2
v_average = 11 m / s
b) The average time
v = v₀ - a t
t = v₀ / a
t = 22 / 350.72
t = 0.0627 s
c) The force can be found with Newton's second law
F = m a
F = 2100 350.72
F = 7.37 10⁵ N
.d) the ratio of this force to weight
F / W = 7.37 10⁵ / (2100 9.8)
F / W = 35.8
.e) Several approaches will be made:
- the resistance of air and tires is neglected
- It is despised that the force is not constant in time
- Depreciation of materials deformation during the crash
Answer:

Explanation:
<u>Given Data:</u>
Mass = m = 4 kg
Acceleration due to gravity = g = 9.8 m/s²
Height = h = 1 m
<u>Required:</u>
Potential Energy = P.E. = ?
<u>Formula:</u>
P.E. = mgh
<u>Solution:</u>
P.E. = (4)(9.8)(1)
P.E. = 39.2 Joules
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
Answer:
t = 3/8 seconds
Explanation:
h=-16t^2 - 10t+6
h= 0 when it hits the ground
0=-16t^2 - 10t+6
factor out a -2
0= -2(8t^2 +5t -3)
divide by -2
0 = (8t^2 +5t -3)
factor
0=(8t-3) (t+1)
using the zero product property
8t-3 = 0 t+1 =0
8t = 3 t= -1
t = 3/8 t= -1
t cannot be negative ( no negative time)
t = 3/8 seconds