The mass in grams of NH₃ produced from the reaction is 3.4 g
<h3>Balanced equation</h3>
We'll begin by writing the balanced equation for the reaction. This illustrated below:
N₂ + 3H₂ -> 2NH₃
From the balanced equation above,
1 dm³ of N₂ reacted to produced 2 dm³ NH₃
<h3>How to determine the volume of NH₃ produced</h3>
From the balanced equation above,
1 dm³ of N₂ reacted to produced 2 dm³ NH₃
Therefore,
2.24 dm³ of N₂ will react to produce = 2.24 × 2 = 4.48 dm³ of NH₃
<h3>How to determine the mass of NH₃ produced</h3>
We'll begin by obtained the mole of 4.48 dm³ of NH₃. Details below:
22.4 dm³ = 1 mole NH₃
Therefore,
4.48 dm³ = 4.48 / 22.4
4.48 dm³ = 0.2 mole of NH₃
Finally, we shall determine the mass of NH₃ as follow:
- Molar mass of NH₃ = 17 g/mol
- Mole of NH₃ = 0.2 mole
- Mass of NH₃ =?
Mass = mole × molar mass
Mass of NH₃ = 0.2 × 17
Mass of NH₃ = 3.4 g
Learn more about stoichiometry:
brainly.com/question/13196642
#SPJ1
Answer:
b. independent/manipulated variable
Explanation:
Independent/manipulated variable - refers to the variable that is changed by the scientist or an experimenter. Only one variable that is independent is required to ensure a fair test in an excellent experiment. As the independent variable is being changed by an experimenter or scientist, data is being recorded simultaneously as they are collected.
Option 2, Br. I'll go over why all other three options are incorrect.
Option 1 - Krypton is a Noble gas, and so it doesn't need to accept electrons since it has an octet.
Option 3 and 4 - Both Calcium and Barium are alkaline earth metals, and give away electrons, since they only have 2.
-T.B.
The gram formula mass is Molar mass. The mass of 1.0 moles is :
3) 48.0 g
FeI2 (B). Group 1 elements (K) dissociate completely, so KCH3CO2 will become K+ and CH3CO2- . Fe2+ and I- don't dissociate in water, so you get FeI2(s) precipitate.