The concentration of AlCl3 solution if 150 ml of the solution contains 550 mg of cl- ion is 0.0344 M
calculation
concentration = moles /volume in liters
volume in liters = 150 /1000= 0.15 L
number of moles calculation
write the equation for dissociation of Al2Cl3
that is AlCl3 ⇔ Al^3+ + 3 Cl ^-
find the moles of Cl^- formed
moles =mass/molar mass
mass in grams= 550/ 1000 =0.55 grams
molar mass of Cl^- =35.5 g/mol
moles is therefore= 0.55/35.5 =0.0155 moles
by use of mole ration betweem AlCl3 to Cl^- which is 1:3 the moles of AlCl3 is =0.0155 x 1/3= 5.167 x10^-3 moles
concentration of AlCl3 is therefore= 5.167 x10^-3/ 0.15 =0.0344 M
I was on the phone to see if you wanted me a couple questions and I would be able answer questions on how
Answer:
4180J
Explanation:
(25.0g)(4.184J/g°C)(75°C-35.0°C)
(25.0g)(40.0°C)(4.184J/g°C)
(1.00*10³g°C)(4.184J/g°C) = 4184J
use sig figs:
4180J
I don’t even know that’s just weird
<span>Temperature is defined as the rate at which molecules move or vibrate
</span>