1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tasya [4]
3 years ago
5

To use the shear formula, the internal shear force must be:

Engineering
1 answer:
nasty-shy [4]3 years ago
8 0

Answer:

vertical, and directed along an axis of symmetry of the cross-section

Explanation:

Shear is a force in an object is in the form of stress or strain. Shear strain is the ratio of length of deformation (extension) to the perpendicular length in the plane of the force applied. Shear stress, which is the stress that tends to shear a material,  is the ratio of shear force applied on a surface to the area of the surface.

The shear formula can be used to determine the maximum shear in an object and is given by; τ = \frac{VQ}{It}. It is applicable when the internal shear force is vertical and directed along an axis of symmetry of the cross-section.

You might be interested in
What are some quality assurance systems
Aloiza [94]
Examples of quality assurance activities include process checklists, process standards, process documentation and project audit. Examples of quality control activities include inspection, deliverable peer reviews and the software testing process. You may like to read more about the quality assurance vs quality control.
7 0
3 years ago
What are the controlling LRFD load combinations for dead and floor live load?
yuradex [85]

Answer:

1) 1.4(D + F)

2) 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)

3) 1.2D + 1.6(Lr or S or R) + ((0.5 or 1.0)*L or 0.8W)

4) 1.2D + 1.6W + (0.5 or 1.0)*L + 0.5(Lr or S or R)

5) 1.2D + 1.0E + (0.5 or 1.0)*L + 0.2S

6) 0.9D + 1.6W + 1.6H

7) 0.9D + 1.0E + 1.6H

Explanation:

Load and Resistance Factor Design

there are 7 basic load combination of LRFD that is

1) 1.4(D + F)

2) 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)

3) 1.2D + 1.6(Lr or S or R) + ((0.5 or 1.0)*L or 0.8W)

4) 1.2D + 1.6W + (0.5 or 1.0)*L + 0.5(Lr or S or R)

5) 1.2D + 1.0E + (0.5 or 1.0)*L + 0.2S

6) 0.9D + 1.6W + 1.6H

7) 0.9D + 1.0E + 1.6H

and

here load factor for L given ( * ) mean it is  permitted = 0.5 for occupancies when live load is less than or equal to 100 psf

here

D is dead load and L is live load

E is earth quake load and S is snow load

W is wind load and R is rain load

Lr is roof live load

3 0
3 years ago
A rigid tank whose volume is 2 m3, initially containing air at 1 bar, 295 K, is connected by a valve to a large vessel holding a
bazaltina [42]

Answer:

Q_{cv}=-339.347kJ

Explanation:

First we calculate the mass of the aire inside the rigid tank in the initial and end moments.

P_iV_i=m_iRT_i (i could be 1 for initial and 2 for the end)

State1

1bar*|\frac{100kPa}{1}|*2=m_1*0.287*295

m_1=232kg

State2

8bar*|\frac{100kPa}{1bar}|*2=m_2*0.287*350

m_2=11.946

So, the total mass of the aire entered is

m_v=m_2-m_1\\m_v=11.946-2.362\\m_v=9.584kg

At this point we need to obtain the properties through the tables, so

For Specific Internal energy,

u_1=210.49kJ/kg

For Specific enthalpy

h_1=295.17kJ/kg

For the second state the Specific internal Energy (6bar, 350K)

u_2=250.02kJ/kg

At the end we make a Energy balance, so

U_{cv}(t)-U_{cv}(t)=Q_{cv}-W{cv}+\sum_i m_ih_i - \sum_e m_eh_e

No work done there is here, so clearing the equation for Q

Q_{cv} = m_2u_2-m_1u_1-h_1(m_v)

Q_{cv} = (11.946*250.02)-(2.362*210.49)-(295.17*9.584)

Q_{cv}=-339.347kJ

The sign indicates that the tank transferred heat<em> to</em> the surroundings.

8 0
3 years ago
Discuss the difference between the observed and calculated values. Is this error? If yes, what is the source?
Scrat [10]

Answer and Explanation:

In any experiment, the observed values are the actual values obtained in any experiment.

The calculated values are the values that are measured by using the observed values in a formula.

The observed values are primary values whereas the calculated values are the secondary values as calaculations are made using observed values.

Yes, if the observed values are of low accuracy.

The values should be recorded with proper care and attention in order to avoid any error.

8 0
3 years ago
What types of issues MAY occur to slow or prevent the best outcome?
german

Answer:

im sorry but i cant find any studies about this and im 3 days late

4 0
3 years ago
Other questions:
  • A bar of steel has the minimum properties Se = 40 kpsi, Sy = 60 kpsi, and Sut = 80 kpsi. The bar is subjected to a steady torsio
    7·1 answer
  • An empty metal can is heated to 908C and sealed. It is then placed in a room to cool to 208C. What is the pressure inside the ca
    11·1 answer
  • Why is it reasonable to say that no system is 100% efficient?​
    6·1 answer
  • For ceramic-matrix composites, high interfacial strength is desirable. ( True , False )
    8·1 answer
  • Need answers for these please ​
    15·1 answer
  • Explain why you chose the final design of your prototype and how it solved the identified need
    9·1 answer
  • What is the function of a regulator?
    8·1 answer
  • Why do you suppose a value of 5 is used? Do you think other values might work?
    6·1 answer
  • Why does the compression-refrigeration cycle have a high-pressure side and a low-pressure side?
    7·1 answer
  • A wheel spins at a constant angular speed of 24rad/s.How many revolutions will the dosk go through in 5minutes?​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!