Answer:

Step-by-step explanation:
velocity of river with respect to ground = 4 mi/h south

Velocity of swimmer with respect to river = 2 mi/h east

According to the formula of relative velocity


Where, V(S,G) be the velocity of swimmer with respect to ground, it is true velocity of swimmer.

Answer:
We can do it with envelopes with amounts $1,$2,$4,$8,$16,$32,$64,$128,$256 and $489
Step-by-step explanation:
- Observe that, in binary system, 1023=1111111111. That is, with 10 digits we can express up to number 1023.
This give us the idea to put in each envelope an amount of money equal to the positional value of each digit in the representation of 1023. That is, we will put the bills in envelopes with amounts of money equal to $1,$2,$4,$8,$16,$32,$64,$128,$256 and $512.
However, a little modification must be done, since we do not have $1023, only $1,000. To solve this, the last envelope should have $489 instead of 512.
Observe that:
- 1+2+4+8+16+32+64+128+256+489=1000
- Since each one of the first 9 envelopes represents a position in a binary system, we can represent every natural number from zero up to 511.
- If we want to give an amount "x" which is greater than $511, we can use our $489 envelope. Then we would just need to combine the other 9 to obtain x-489 dollars. Since
, by 2) we know that this would be possible.
If you're asking for place value:
Thousands, and Ten Thousands place.
Just value:
8,000 and 80,000
L=2W+3, A=LW, using L from the first in the second gives you:
A=(2W+3)W
A=2W^2+3W, and we are told A=90 so
2W^2+3W=90
2W^2+3W-90=0
2W^2-12W+15W-90=0
2W(W-6)+15(W-6)=0
(2W+15)(W-6)=0, since W>0 for all real possibilities,
W=6ft, and since L=2W+3
L=15ft
So the pool will be 6 ft wide by 15 ft long.
The area of the triangle is
A = (xy)/2
Also,
sqrt(x^2 + y^2) = 19
We solve this for y.
x^2 + y^2 = 361
y^2 = 361 - x^2
y = sqrt(361 - x^2)
Now we substitute this expression for y in the area equation.
A = (1/2)(x)(sqrt(361 - x^2))
A = (1/2)(x)(361 - x^2)^(1/2)
We take the derivative of A with respect to x.
dA/dx = (1/2)[(x) * d/dx(361 - x^2)^(1/2) + (361 - x^2)^(1/2)]
dA/dx = (1/2)[(x) * (1/2)(361 - x^2)^(-1/2)(-2x) + (361 - x^2)^(1/2)]
dA/dx = (1/2)[(361 - x^2)^(-1/2)(-x^2) + (361 - x^2)^(1/2)]
dA/dx = (1/2)[(-x^2)/(361 - x^2)^(1/2) + (361 - x^2)/(361 - x^2)^(1/2)]
dA/dx = (1/2)[(-x^2 - x^2 + 361)/(361 - x^2)^(1/2)]
dA/dx = (-2x^2 + 361)/[2(361 - x^2)^(1/2)]
Now we set the derivative equal to zero.
(-2x^2 + 361)/[2(361 - x^2)^(1/2)] = 0
-2x^2 + 361 = 0
-2x^2 = -361
2x^2 = 361
x^2 = 361/2
x = 19/sqrt(2)
x^2 + y^2 = 361
(19/sqrt(2))^2 + y^2 = 361
361/2 + y^2 = 361
y^2 = 361/2
y = 19/sqrt(2)
We have maximum area at x = 19/sqrt(2) and y = 19/sqrt(2), or when x = y.