Answer:
Acceleration = 5.77 m/s²
Distance cover in 13 seconds = 487.56 meter
Explanation:
Given:
Final velocity of mobile device = 75 m/s
initial velocity of mobile device = 0 m/s
Time taken = 13 seconds
Find:
Acceleration
Distance cover in 13 seconds
Computation:
v = u + at
75 = 0 + (a)(13)
13a = 75
a = 5.77
Acceleration = 5.77 m/s²
s = ut + (1/2)(a)(t²)
s = (0)(t) + (1/2)(5.77)(13²)
Distance cover in 13 seconds = 487.56 meter
Although the sample is not shown in this question, we can conclude that it would be reasonably easy for David to provide evidence of the color, consistency, temperature, and texture of the soil.
<h3 />
<h3>What are these properties an example of?</h3>
These are all examples of the physical properties of a sample. Since we cannot see the sample that David is using, it would be safest to assume that he would have no trouble providing evidence as to the physical properties of the soil, the:
- Color
- Consistency
- Temperature
- Texture
are all examples of this.
Therefore, we can confirm that David can provide evidence of the color, consistency, temperature, and texture of the soil.
To learn more about physical properties visit:
brainly.com/question/24632287?referrer=searchResults
Answer:
-54.12 V
Explanation:
The work done by this force is equal to the difference between the final value and the initial value of the energy. Since the charge starts from the rest its initial kinetic energy is zero.

The change in electrostatic potential energy
, of one point charge q is defined as the product of the charge and the potential difference.

Answer: Gamma rays
Explanation: The given waves belong to the electromagnetic spectrum which consists of different electromagnetic radiations arranged in terms of increasing wavelengths or decreasing frequencies.


Thus 
E= energy
= frequency
c = speed of light
= wavelength
Thus frequency and wavelength are inversely related. The waves having high energies ave high frequencies and have shorter wavelengths.
Thus gamma rays having highest energy have highest frequency and shortest wavelength.
Electric current can be generated by moving a metal wire through a magnetic field It is also different than static electricity, which is the accumulation of charges on a surface. Electric generators rotate a coil of wires through a magnetic field.