Answer:
0.265
Explanation:
Draw a free body diagram. There are four forces:
Normal force Fn pushing up.
Weight force mg pulling down.
Tension force T at an angle θ.
Friction force Fn μ pushing left.
Sum the forces in the y direction:
∑F = ma
Fn + T sin θ − mg = 0
Fn = mg − T sin θ
Sum the forces in the x direction:
∑F = ma
T cos θ − Fn μ = 0
Fn μ = T cos θ
μ = T cos θ / Fn
μ = T cos θ / (mg − T sin θ)
Given T = 164 N, θ = 10.0°, m = 65.0 kg, and g = 9.8 m/s²:
μ = (164 N cos 10.0°) / (65.0 kg × 9.8 m/s² − 164 N sin 10.0°)
μ = 0.265
Answer:
The maximum power density in the reactor is 37.562 KW/L.
Explanation:
Given that,
Height = 10 ft = 3.048 m
Diameter = 10 ft = 3.048 m
Flux = 1.5
Power = 835 MW
We need to calculate the volume of cylinder
Using formula of volume

Put the value into the formula


We need to calculate the maximum power density in the reactor
Using formula of power density

Where, P = power density
E = energy
V = volume
Put the value into the formula


Hence, The maximum power density in the reactor is 37.562 KW/L.
Answer:
They have the same amount of energy
Explanation:
Electrons are said to be the subatomic particles that move around the nucleus of an atom. These electrons are negatively charged particles that are seen to be quite smaller than the nucleus of an atom.
The electron shells of these atoms are usually being filled from the inside out with the low-energy shells closer to the nucleus being filled before they can go into the much higher-energy shells that are a bit out
Answer:
Train accaleration = 0.70 m/s^2
Explanation:
We have a pendulum (presumably simple in nature) in an accelerating train. As the train accelerates, the pendulum is going move in the opposite direction due to inertia. The force which causes this movement has the same accaleration as that of the train. This is the basis for the problem.
Start by setting up a free body diagram of all the forces in play: The gravitational force on the pendulum (mg), the force caused by the pendulum's inertial resistance to the train(F_i), and the resulting force of tension caused by the other two forces (F_r).
Next, set up your sum of forces equations/relationships. Note that the sum of vertical forces (y-direction) balance out and equal 0. While the horizontal forces add up to the total mass of the pendulum times it's accaleration; which, again, equals the train's accaleration.
After doing this, I would isolate the resulting force in the sum of vertical forces, substitute it into the horizontal force equation, and solve for the acceleration. The problem should reduce to show that the acceleration is proportional to the gravity times the tangent of the angle it makes.
I've attached my work, comment with any questions.
Side note: If you take this end result and solve for the angle, you'll see that no matter how fast the train accelerates, the pendulum will never reach a full 90°!