Brianna pulls on the same toy toward the south with 2.0 ... Calculate the magnitude of the resultant force on the toy
We assume that the gas is an ideal gas so we can use the relation PV=nRT. Assuming that the temperature of the system is at ambient temperature, T = 298 K. We can calculate as follows:
PV = nRT
P = nRT / V
P = (0.801 mol ) (0.08205 L-atm / mol-K) (298.15 K) / 12 L
P = 1.633 atm
Explanation:
Given that,
A student covered a distance of 210 meters in 35 seconds.
We need to find the student's speed in meters/second and also in meters/minute.
Speed, v = distance (d)/time (t)
So,

We know that, 1 minute = 60 seconds

Hence, the student's speed is 6 m/s or 360 meters/minute.
Answer:
the field at the center of solenoid 2 is 12 times the field at the center of solenoid 1.
Explanation:
Recall that the field inside a solenoid of length L, N turns, and a circulating current I, is given by the formula:
Then, if we assign the subindex "1" to the quantities that define the magnetic field (
) inside solenoid 1, we have:

notice that there is no dependence on the diameter of the solenoid for this formula.
Now, if we write a similar formula for solenoid 2, given that it has :
1) half the length of solenoid 1 . Then 
2) twice as many turns as solenoid 1. Then 
3) three times the current of solenoid 1. Then 
we obtain:
