Answer:
The magnitude of the tension on the ends of the clothesline is 41.85 N.
Explanation:
Given that,
Poles = 2
Distance = 16 m
Mass = 3 kg
Sags distance = 3 m
We need to calculate the angle made with vertical by mass
Using formula of angle



We need to calculate the magnitude of the tension on the ends of the clothesline
Using formula of tension

Put the value into the formula


Hence, The magnitude of the tension on the ends of the clothesline is 41.85 N.
We're u can never put it back together
Answer:
θ = 13.16 °
Explanation:
Lets take mass of child = m
Initial velocity ,u= 1.1 m/s
Final velocity ,v=3.7 m/s
d= 22.5 m
The force due to gravity along the incline plane = m g sinθ
The friction force = (m g)/5
Now from work power energy
We know that
work done by all forces = change in kinetic energy
( m g sinθ - (m g)/5 ) d = 1/2 m v² - 1/2 m u²
(2 g sinθ - ( 2 g)/5 ) d = v² - u²
take g = 10 m/s²
(20 sinθ - ( 20)/5 ) 22.5 = 3.7² - 1.1²
20 sinθ - 4 =12.48/22.5
θ = 13.16 °
Work is calculated as the product of Force, Distance, and
angular motion. In this case, the work done by gravity is perpendicular to the motion
of the cart, so θ = 90°
and W=Fdcosθ
W=35.0 N x 20.0 m x cos90
W=0 J
This means that work done perpendicular to the direction of
the motion is always zero.
Answer:
=0.855V
Explanation:
The induced voltage can be calculated using below expression
E =B x dA/dt
Where dA/dt = area
B= magnetic field = 6.90×10-5 T.
We were given speed of 885 km/h but we will need to convert to m/s for consistency of unit
speed = 885 km/h
speed = 885 x 10^3 m/hr
speed = 885 x 10^3/60 x60 m/s
speed = 245.8 m/s
If The aircraft wing sweep out" an area
at t= 50.4seconds then we have;
dA/dt = 50.4 x 245.8
= 123388.32m^2/s
Then from the expression above
E =B x dA/dt substitute the values of each parameters, we have
E = 6.90 x 10^-5 x 12388.32 V
E =0.855V
Hence, the average induced voltage between the tips of the wings is =0.855V