Tx=\frac{IT}{dT}
Where
Tx=talent
I=Current
t=time
dT=Change in temperature
From the question we are told
Talent = Current in nuerons x Time ÷ Change in dogs body Temperature
Generally the equation for the give Question is is mathematically given as
Tx=\frac{IT}{dT}
Where
Tx=talent
I=Current
t=time
dT=Change in temperature
Where
Talent refer to skills and ability.
For more information on this visit
brainly.com/question/20459283?referrer=searchResults
The equation for luminous flux is given as P = 4


E
where P is the luminous flux, r is the distance and E is the illumination. The unit for P is lumen, E is lux and r is in meters. Substituting the given to the equation:
P = 4


E
P= 4


(9.35) = 1057.46 lumens (lm)
The total luminous flux is equal to 1057.46 lumens (lm).
<u>Answer: The model is described by :</u>
The strength of the field increases as you get closer to Earth, as shown by the smaller spaces between the circles.
Explanation :
According to universal gravitational law, the force acting in the universe between two objects is given by :

It is clear that the gravitational force depends directly on the product of masses and inversely on the square of the distance between them.
The given image shows a model of the gravitational field around Earth. The arrows in the image show the direction of the force. Gravitational field depends on the position of objects.
As we move closer to the earth, the force increases and hence the field increase.
So, the correct option is (D) " The strength of the field increases as you get closer to Earth, as shown by the smaller spaces between the circles ".
When the sound wave returns to the machine, you can measure
how long it took to return.
(You may notice that it's working just like RADAR, which does the
same thing with radio waves instead of sound waves.)
Even if you know how long the sound took to get to the bottom and
return to the top, you can't DO anything with this information if you
don't know the SPEED of the sound through the water. Not only
the inventory of this machine, but anyone who uses it, has to know
the speed of the sound through water in order to use the round-trip
time to calculate the depth.