Answer: 330.88 J
Explanation:
Given
Linear velocity of the ball, v = 17.1 m/s
Distance from the joint, d = 0.47 m
Moment of inertia, I = 0.5 kgm²
The rotational kinetic energy, KE(rot) of an object is given by
KE(rot) = 1/2Iw²
Also, the angular velocity is given
w = v/r
Firstly, we calculate the angular velocity. Since it's needed in calculating the Kinetic Energy
w = v/r
w = 17.1 / 0.47
w = 36.38 rad/s
Now, substituting the value of w, with the already given value of I in the equation, we have
KE(rot) = 1/2Iw²
KE(rot) = 1/2 * 0.5 * 36.38²
KE(rot) = 0.25 * 1323.5
KE(rot) = 330.88 J
Answer:
D. 24 lb
Explanation:
Tina has been dieting for 13 weeks
First week she lost 3 pounds
Next week she gained 1 pound and did not lose any. This will be subtracted as she has gained a pound
The remaining 11 weeks she lost 2 pounds per week
Weight lost in the 11 weeks = 11×2 =22 pounds
Total weight lost
3-1+22 = 24 lb
Tina has lost 24 pounds in total during the 13 weeks
Answer:
chemical energy to electrical energy to sound energy to heat energy
Answer:
The wavelength of these signals is as follow:
- Wavelength of 550 kHz is 545.45 m
- Wavelength of 1600 kHz is 187.5 m
Explanation:
Given that:
Frequency = 550 kHz & 1600 kHz
Velocity = 3.0 x 10⁸ m/s
As we know that frequency is expressed by the following equation:
- Frequency = Velocity / Wavelength ---- (1)
For 550 kHz:
The equation can be rearranged as
Wavelength = Velocity / Frequency
Wavelength = (3.0 x 10⁸ m/s) / (550 x 1000 Hz)
Wavelength = 545.45 m
For 1600 kHz:
Wavelength = Velocity / Frequency
Wavelength = (3.0 x 10⁸ m/s) / (1600 x 1000 Hz)
Wavelength = 187.5 m
It depends on their tension. Normally, the rubber band store more tension than a t shirt.