<h2>
Density of the unknown liquid is 771.93 kg/m³</h2>
Explanation:
An empty graduated cylinder weighs 55.26 g
Weight of empty cylinder = 55.26 g = 0.05526 kg
Volume of liquid filled = 48.1 mL = 48.1 x 10⁻⁶ m³
Weight of cylinder plus liquid = 92.39 g = 0.09239 kg
Weight of liquid = 0.09239 - 0.05526
Weight of liquid = 0.03713 kg
We have
Mass = Volume x Density
0.03713 = 48.1 x 10⁻⁶ x Density
Density = 771.93 kg/m³
Density of the unknown liquid is 771.93 kg/m³
IMA = Ideal Mechanical Advantage
First class lever = > F1 * x2 = F2 * x1
Where F1 is the force applied to beat F2. The distance from F1 and the pivot is x1 and the distance from F2 and the pivot is x2
=> F1/F2 = x1 /x2
IMA = F1/F2 = x1/x2
Now you can see the effects of changing F1, F2, x1 and x2.
If you decrease the lengt X1 between the applied effort (F1) and the pivot, IMA decreases.
If you increase the length X1 between the applied effort (F1) and the pivot, IMA increases.
If you decrease the applied effort (F1) and increase the distance between it and the pivot (X1) the new IMA may incrase or decrase depending on the ratio of the changes.
If you decrease the applied effort (F1) and decrease the distance between it and the pivot (X1) IMA will decrease.
Answer: Increase the length between the applied effort and the pivot.
118 elements
from what knowledge i have gathered in my human brain i hope that this is helpful
Winter and Summer happen every year, pretty much on schedule.
When they happen, the 'weather' changes, but the 'climate' doesn't.
If you live in the right place, then you might get several blizzards every
Winter. They're changes in the 'weather' but not in the 'climate'.
If the temperature where you live stays well below zero for a hundred
years, then you might be entering an ice age.
Or let's say your town has had blizzards every Winter for the past 20 years
but it never had one for 100 years before that.
Either of these would be a climatic change.