Answer:
Vi = 32 [m/s]
Explanation:
In order to solve this problem we must use the following the two following kinematics equations.

The negative sign of the second term of the equation means that the velocity decreases, as indicated in the problem.
where:
Vf = final velocity = 8[m/s]
Vi = initial velocity [m/s]
a = acceleration = [m/s^2]
t = time = 5 [s]
Now replacing:
8 = Vi - 5*a
Vi = (8 + 5*a)
As we can see we have two unknowns the initial velocity and the acceleration, so we must use a second kinematics equation.

where:
d = distance = 100[m]
(8^2) = (8 + 5*a)^2 - (2*a*100)
64 = (64 + 80*a + 25*a^2) - 200*a
0 = 80*a - 200*a + 25*a^2
0 = - 120*a + 25*a^2
0 = 25*a(a - 4.8)
therefore:
a = 0 or a = 4.8 [m/s^2]
We choose the value of 4.8 as the acceleration value, since the zero value would not apply.
Returning to the first equation:
8 = Vi - (4.8*5)
Vi = 32 [m/s]
The amount of energy needed is 2093 J
Explanation:
The amount of energy needed to increase the temperature of a substance by
is given by the equation

where
m is the mass of the substance
C is its specific heat capacity
is the increase in temperature
For the water in this problem, we have
m = 50.0 g = 0.050 kg
(specific heat capacity of water)

Therefore, the amount of energy needed is

Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly
Part a)
in horizontal direction there is no gravity or no other acceleration
so in horizontal direction the speed of clam will remain same

Part b)
In vertical direction we can use kinematics



part c)
if the speed of crow will be increased then the horizontal speed of the clam will also increase but there is no change in the vertical speed