Answer:
a) the one with a lower orbit b) the one with a higher orbit
Explanation:
Let's consider orbital mechanics. To get an object in orbit, we need it to fall to earth parallel to the earth's surface. To understand it easily imagine a projectile thrown horizontally further and further away, at one point, the projectile hits the cannon from behind. Considering there is no wind resistance, that would be a projecile in orbit.
In other words, the circular orbits of some objects around a massive body are due to the equality between centrifugal acceleration and gravity acceleration.
.
so the velocity is

where "G" is the gravitational constant, "M" the mass of the massive body and "r" the distance between the object and the center of gravity of mass M. As you can note, if "r" increase, "v" decrease.
The orbital period of any object in orbit is

where "a" is length of semi-major axis (a = r in circular orbits). So if "r" increase, "T" increase.
<span>They are different and unique from the other states of matter. Plasma is different from a gas, because it is made up of groups of positively and negatively charged particles. In neon gas, the electrons are all bound to the nucleus. In neon plasma, the electrons are free to move around the system.
Hope this helps.
</span>
Answer:
Technician A and Technician B are correct.
Explanation:
Answer:
B) 1218
Explanation:
N = Total number of turns in the solenoid
L = length of the solenoid = 34.00 cm = 0.34 m
B = magnetic field at the center of the solenoid = 9 mT = 9 x 10⁻³ T
i = current carried by the solenoid = 2.000 A
Magnetic field at the center of the solenoid is given as


N = 1218