Answer:
Think of it this way If you have a phosphorus atom whats its oposites once you found that out you may be able to find the answer
Explanation:
Hope this helps :)
Use the percent as mass in g
Mass g) --> g/mol
K, B and H molar mass from periodic table
54.93 g K x (1 mol K/ 39.10 g K) = 1.405 mol K
38.73 g B x (1 mol B/ 10.81 g B) = 3.583 mol B
6.34 g H x (1 mol H/ 1.008 g H) = 6.290 mol H
Divide all three answers by the smallest value and you will get
1.000 mol K
2.550 mol B
4.477 mol H
now multiply these three answers by a number that will make all a whole number or (a number with a 9 as the first decimal point)
so multiply by 2
2 mol k
5 mol B
and 9 mol H
E.F. = K2B5H9
Answer is D
Sorry for bad explanation!!!!!!
massive livand that sarah or someone is how u do it
Answer:
Kb = 1.77x10⁻⁵
Explanation:
When NH₃, a weak base, is in equilibrium with waterm the reaction that occurs is:
NH₃(aq) + H₂O(l) ⇄ NH₄⁺(aq) + OH⁻(aq)
And the dissociation constant, Kb, for this equilibrium is:
Kb = [NH₄⁺] [OH⁻] / [NH₃]
To find Kb you need to find the concentration of each species. The equilibrium concentrations are:
[NH₃] = 0.950M - X
[NH₄⁺] = X
[OH⁻] = X
<em>Where X is reaction coordinate.</em>
You can know [OH⁻] and, therefore, X, with pH of the solution, thus:
pH = -log [H⁺] = 11.612
[H⁺] = 2.4434x10⁻¹²
As 1x10⁻¹⁴ = [H⁺] [OH⁻]
1x10⁻¹⁴ / 2.4434x10⁻¹² = [OH⁻]
4.0926x10⁻³ = [OH⁻] = X
Replacing, concentrations of the species are:
[NH₃] = 0.950M - X
[NH₄⁺] = X
[OH⁻] = X
[NH₃] = 0.9459M
[NH₄⁺] = 4.0926x10⁻³M
[OH⁻] = 4.0926x10⁻³M
Replacing in Kb expression:
Kb = [NH₄⁺] [OH⁻] / [NH₃]
Kb = [4.0926x10⁻³M] [4.0926x10⁻³M] / [0.9459M]
<h3>Kb = 1.77x10⁻⁵</h3>